Spatial-Frequency Characteristics of EEG Associated With the Mental Stress in Human-Machine Systems

可解释性 判别式 计算机科学 脑电图 人工智能 卷积神经网络 频带 人脑 支持向量机 机器学习 模式识别(心理学) 神经科学 心理学 电信 带宽(计算)
作者
Qunli Yao,Heng Gu,Shaodi Wang,Xiaoli Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5904-5916
标识
DOI:10.1109/jbhi.2024.3422384
摘要

Accurate assessment of user mental stress in human-machine system plays a crucial role in ensuring task performance and system safety. However, the underlying neural mechanisms of stress in human-machine tasks and assessment methods based on physiological indicators remain fundamental challenges. In this paper, we employ a virtual unmanned aerial vehicle (UAV) control experiment to explore the reorganization of functional brain network patterns under stress conditions. The results indicate enhanced functional connectivity in the frontal theta band and central beta band, as well as reduced functional connectivity in the left parieto-occipital alpha band, which is associated with increased mental stress. Evaluation of network metrics reveals that decreased global efficiency in the theta and beta bands is linked to elevated stress levels. Subsequently, inspired by the frequency-specific patterns in the stress brain network, a cross-band graph convolutional network (CBGCN) model is constructed for mental stress brain state recognition. The proposed method captures the spatial-frequency topological relationships of cross-band brain networks through multiple branches, with the aim of integrating complex dynamic patterns hidden in the brain network and learning discriminative cognitive features. Experimental results demonstrate that the neuro-inspired CBGCN model improves classification performance and enhances model interpretability. The study suggests that the proposed approach provides a potentially viable solution for recognizing stress states in human-machine system by using EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liujianxin发布了新的文献求助10
1秒前
得了MVP完成签到,获得积分10
2秒前
瘦瘦柠檬完成签到,获得积分20
3秒前
叶落无痕、完成签到,获得积分10
4秒前
123完成签到 ,获得积分10
8秒前
炳灿完成签到 ,获得积分10
8秒前
唯为完成签到,获得积分10
9秒前
jiuzhege完成签到 ,获得积分10
9秒前
9秒前
梧桐完成签到 ,获得积分10
9秒前
Akim应助konghusheng采纳,获得10
12秒前
学习完成签到 ,获得积分10
12秒前
13秒前
乐乐妈完成签到,获得积分10
13秒前
阳佟若剑完成签到,获得积分10
14秒前
会飞的猪完成签到,获得积分10
14秒前
爱读文献的小郝完成签到,获得积分10
15秒前
老白完成签到,获得积分10
16秒前
张泽龄完成签到 ,获得积分10
16秒前
李爱国应助liujianxin采纳,获得10
16秒前
bigpluto完成签到,获得积分0
17秒前
悦耳的妙竹完成签到 ,获得积分10
20秒前
阿尔法贝塔完成签到 ,获得积分10
20秒前
嘻嘻哈哈应助自由的凌雪采纳,获得10
20秒前
GingerF应助xzy998采纳,获得50
21秒前
张赫兹完成签到 ,获得积分10
23秒前
万能的小叮当完成签到,获得积分0
23秒前
24秒前
老高完成签到 ,获得积分10
24秒前
斯琪欣完成签到,获得积分10
24秒前
诚心的大侠完成签到,获得积分20
24秒前
给你寄春天完成签到 ,获得积分10
25秒前
刘师兄吧完成签到,获得积分10
26秒前
Harden完成签到,获得积分10
26秒前
自转无风完成签到,获得积分10
28秒前
28秒前
pjc完成签到,获得积分10
29秒前
轻松白开水完成签到 ,获得积分10
29秒前
31秒前
面向阳光完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264