Pipeline leak detection based on multiscale convolution neural network and improved symmetric dot pattern optimized by grasshopper optimization algorithm

蚱蜢 管道(软件) 算法 人工神经网络 卷积(计算机科学) 计算机科学 检漏 泄漏 人工智能 工程类 地质学 古生物学 环境工程 程序设计语言
作者
Yong Zhang,Pengfei Xing,Hongli Dong,Jingyi Lu,X. Zhou,Yina Zhou,Hao Liang,Gongfa Li
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241273781
摘要

In the engineering of pipeline condition identification, the complexity of pipeline signal components often results in insufficient feature extraction with traditional feature extraction-machine learning methods, thereby affecting the recognition performance. In order to effectively address the aforementioned issues, based on deep learning, we propose a multiscale convolution neural network (MCNN) to effectively identify pipeline conditions by classifying improved symmetry dot pattern (ISDP) images of one-dimensional negative pressure wave signals of pipelines. First, we propose the ISDP transformation method, considering that negative pressure wave signals of pipes with different leakage degrees have different amplitude changes. The ISDP transformation method transforms the negative pressure wave signal of the pipeline from one dimension to two dimensions. Then the grasshopper optimization algorithm (GOA) was employed to optimize the parameters of the ISDP algorithm. Second, we build the MCNN depth network to train and classify the ISDP image. The MCNN can simultaneously learn both the global and local features of an image. The corresponding evaluation indicators show that the proposed method of working condition recognition using MCNN to classify and recognize the ISDP image of pipeline signal has higher accuracy and robustness than traditional machine learning methods and common deep learning methods. The evaluation results prove that the proposed algorithm is effective in pipeline signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
beichuanheqi完成签到,获得积分10
1秒前
留白的大脑完成签到,获得积分10
1秒前
1秒前
羞涩的丹云完成签到,获得积分10
1秒前
1秒前
2秒前
FashionBoy应助苏苏采纳,获得10
2秒前
舒心的期待完成签到,获得积分10
2秒前
2秒前
善学以致用应助歌者无罪采纳,获得10
2秒前
wangwangwang完成签到,获得积分10
2秒前
可爱的函函应助万幸鹿采纳,获得10
3秒前
栗子发布了新的文献求助10
3秒前
小鑫发布了新的文献求助10
3秒前
zhiguoxin完成签到,获得积分10
3秒前
zero完成签到,获得积分10
4秒前
zhuzhu完成签到,获得积分10
4秒前
刘琪应助chengxc采纳,获得10
4秒前
towanda完成签到,获得积分10
5秒前
Orange关注了科研通微信公众号
5秒前
蚊蚊爱读书应助Chem34采纳,获得10
5秒前
Orange应助朝圣者采纳,获得10
5秒前
5秒前
6秒前
fwz发布了新的文献求助10
6秒前
谦让的世德关注了科研通微信公众号
6秒前
善学以致用应助唐新惠采纳,获得10
6秒前
VDC发布了新的文献求助10
7秒前
8秒前
雨辰发布了新的文献求助10
8秒前
华仔应助桔梗采纳,获得10
8秒前
9秒前
ccm应助小呆瓜与鱼采纳,获得10
9秒前
好好完成签到,获得积分20
9秒前
田様应助liu采纳,获得10
10秒前
12秒前
传奇3应助孙豪泽采纳,获得10
12秒前
12秒前
蜀安发布了新的文献求助200
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066