Testing and Evaluation of Health Care Applications of Large Language Models

医学 医疗保健 重症监护医学 经济 经济增长
作者
Suhana Bedi,Yutong Liu,Lucy Orr-Ewing,Dev Dash,Oluwasanmi Koyejo,Alison Callahan,Jason Fries,Michael Wornow,Akshay Swaminathan,Lisa Soleymani Lehmann,Hyo Jung Hong,Mehr Kashyap,Akash Chaurasia,Nirav R. Shah,Karandeep Singh,Troy Tazbaz,Arnold Milstein,Michael A. Pfeffer,Nigam H. Shah
出处
期刊:JAMA [American Medical Association]
被引量:28
标识
DOI:10.1001/jama.2024.21700
摘要

Importance Large language models (LLMs) can assist in various health care activities, but current evaluation approaches may not adequately identify the most useful application areas. Objective To summarize existing evaluations of LLMs in health care in terms of 5 components: (1) evaluation data type, (2) health care task, (3) natural language processing (NLP) and natural language understanding (NLU) tasks, (4) dimension of evaluation, and (5) medical specialty. Data Sources A systematic search of PubMed and Web of Science was performed for studies published between January 1, 2022, and February 19, 2024. Study Selection Studies evaluating 1 or more LLMs in health care. Data Extraction and Synthesis Three independent reviewers categorized studies via keyword searches based on the data used, the health care tasks, the NLP and NLU tasks, the dimensions of evaluation, and the medical specialty. Results Of 519 studies reviewed, published between January 1, 2022, and February 19, 2024, only 5% used real patient care data for LLM evaluation. The most common health care tasks were assessing medical knowledge such as answering medical licensing examination questions (44.5%) and making diagnoses (19.5%). Administrative tasks such as assigning billing codes (0.2%) and writing prescriptions (0.2%) were less studied. For NLP and NLU tasks, most studies focused on question answering (84.2%), while tasks such as summarization (8.9%) and conversational dialogue (3.3%) were infrequent. Almost all studies (95.4%) used accuracy as the primary dimension of evaluation; fairness, bias, and toxicity (15.8%), deployment considerations (4.6%), and calibration and uncertainty (1.2%) were infrequently measured. Finally, in terms of medical specialty area, most studies were in generic health care applications (25.6%), internal medicine (16.4%), surgery (11.4%), and ophthalmology (6.9%), with nuclear medicine (0.6%), physical medicine (0.4%), and medical genetics (0.2%) being the least represented. Conclusions and Relevance Existing evaluations of LLMs mostly focus on accuracy of question answering for medical examinations, without consideration of real patient care data. Dimensions such as fairness, bias, and toxicity and deployment considerations received limited attention. Future evaluations should adopt standardized applications and metrics, use clinical data, and broaden focus to include a wider range of tasks and specialties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情灯泡完成签到,获得积分10
1秒前
Vesper发布了新的文献求助10
2秒前
科研通AI2S应助务实思烟采纳,获得10
3秒前
微笑发布了新的文献求助20
4秒前
包容的香菱完成签到,获得积分20
5秒前
Ava应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
迷路曼雁应助科研通管家采纳,获得20
7秒前
7秒前
大个应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
三里墩头应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
三里墩头应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得20
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
Seciy完成签到 ,获得积分10
10秒前
372925abc完成签到,获得积分10
11秒前
从容映易完成签到 ,获得积分10
12秒前
13秒前
阔达的秀发完成签到,获得积分10
14秒前
丘比特应助Vesper采纳,获得10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366