Abdominal perfusion pressure is critical for survival analysis in patients with intra-abdominal hypertension: mortality prediction using incomplete data

医学 倾向得分匹配 插补(统计学) 缺少数据 内科学 重症监护医学 机器学习 计算机科学
作者
Xu Liang,Weijie Zhao,Jiao He,Siyu Hou,Jialin He,Yan Zhuang,Ying Wang,Hua Yang,Jingjing Xiao,Yuan Qiu
出处
期刊:International Journal of Surgery [Elsevier]
被引量:4
标识
DOI:10.1097/js9.0000000000002026
摘要

Background: Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, we developed a robust mortality prediction model with APP from incomplete data. Methods: We retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. Results: We included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP< 60 mmHg had significantly higher all-cause mortality within 7 to 90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. Conclusions: APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. We constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马发布了新的文献求助10
刚刚
1111发布了新的文献求助10
1秒前
无心客应助研友_V8Qmr8采纳,获得10
1秒前
1秒前
qingqingiqng发布了新的文献求助10
1秒前
CipherSage应助而风不止采纳,获得10
2秒前
2秒前
浮游应助田田田田采纳,获得10
2秒前
成就寄瑶完成签到,获得积分10
3秒前
sorawing完成签到,获得积分10
3秒前
彤彤完成签到,获得积分10
3秒前
cc6521完成签到,获得积分10
3秒前
3秒前
3秒前
将个烂就完成签到,获得积分10
4秒前
Brady6发布了新的文献求助30
4秒前
科目三应助成龙王采纳,获得10
4秒前
蓝梦一刀完成签到,获得积分10
4秒前
优美谷兰发布了新的文献求助10
5秒前
upupup完成签到,获得积分10
5秒前
XLH完成签到 ,获得积分10
5秒前
5秒前
打打应助追寻荔枝采纳,获得10
5秒前
6秒前
ding应助666666采纳,获得10
6秒前
隐形曼青应助reze采纳,获得10
7秒前
高盛旺发布了新的文献求助10
7秒前
CipherSage应助爰采唐矣采纳,获得10
7秒前
乐乐应助yyyyyy采纳,获得10
7秒前
8秒前
清脆大树完成签到,获得积分10
8秒前
8秒前
www完成签到,获得积分10
8秒前
ChemistryZyh发布了新的文献求助10
9秒前
9秒前
田田田田完成签到,获得积分10
10秒前
喜悦悟空完成签到,获得积分10
10秒前
10秒前
搜集达人应助蘑菇菇采纳,获得10
10秒前
领导范儿应助肘子采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812