Abdominal perfusion pressure is critical for survival analysis in patients with intra-abdominal hypertension: mortality prediction using incomplete data

医学 倾向得分匹配 插补(统计学) 缺少数据 内科学 重症监护医学 机器学习 计算机科学
作者
Xu Liang,Weijie Zhao,Jiao He,Siyu Hou,Jialin He,Yan Zhuang,Ying Wang,Hua Yang,Jingjing Xiao,Yuan Qiu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:2
标识
DOI:10.1097/js9.0000000000002026
摘要

Background: Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, we developed a robust mortality prediction model with APP from incomplete data. Methods: We retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. Results: We included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP< 60 mmHg had significantly higher all-cause mortality within 7 to 90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. Conclusions: APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. We constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助阮人雄采纳,获得50
1秒前
香山叶正红完成签到 ,获得积分10
2秒前
6秒前
8秒前
槑槑不好玩完成签到 ,获得积分10
10秒前
cmx完成签到,获得积分10
11秒前
科研通AI5应助光亮向雁采纳,获得30
12秒前
图图发布了新的文献求助20
13秒前
善学以致用应助cc采纳,获得10
15秒前
17秒前
小蘑菇应助爱科研的佳慧采纳,获得30
17秒前
18秒前
jkr完成签到,获得积分10
19秒前
Yan完成签到 ,获得积分10
20秒前
Margaret完成签到 ,获得积分10
21秒前
CY发布了新的文献求助10
22秒前
指导灰完成签到 ,获得积分10
23秒前
zqlxueli完成签到 ,获得积分10
23秒前
赘婿应助黑白采纳,获得10
29秒前
29秒前
33秒前
沐风发布了新的文献求助10
33秒前
cc发布了新的文献求助10
33秒前
小菡菡完成签到,获得积分10
33秒前
36秒前
萤火虫发布了新的文献求助10
36秒前
科研通AI5应助cxwcn采纳,获得10
37秒前
42秒前
45秒前
光亮向雁发布了新的文献求助30
50秒前
高兴的蜻蜓完成签到,获得积分10
52秒前
55秒前
科研通AI5应助王运静采纳,获得10
56秒前
AlexLee发布了新的文献求助10
1分钟前
木木完成签到 ,获得积分10
1分钟前
彩色迎丝完成签到,获得积分10
1分钟前
Viv发布了新的文献求助10
1分钟前
Frederick完成签到,获得积分10
1分钟前
Lucas应助goldNAN采纳,获得10
1分钟前
多情语海完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315