The Effect of TiO2 on the Electrochemical Performance of Sb2O3 Anodes for Li-Ion Batteries

阳极 材料科学 电化学 复合数 循环伏安法 电极 纳米复合材料 化学工程 复合材料 冶金 化学 工程类 物理化学
作者
Kithzia Gomez,Elizabeth M. Fletes,Jasón G. Parsons,Mataz Alcoutlabi
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (15): 6598-6598 被引量:2
标识
DOI:10.3390/app14156598
摘要

Antimony (Sb) and its composites have been recognized as potentially good anode materials for lithium-ion batteries (LIBs) due to their relatively high theoretical capacity of 660 mAh g−1 and to their low cost. However, Sb-based anodes suffer from a high-volume change during the lithiation/delithiation process that results in capacity fading and anode degradation after prolonged charge/discharge cycles. To address this issue, Sb2O3/TiO2 nanocomposite electrodes can be synthesized and used as anodes for LIBs with high capacity and good electrochemical stability. In the present work, TiO2@Sb2O3 composites with different (TiO2:Sb2O3) ratios of 0:1, 1:1, 1:4 and 3:1 were synthesized and directly used as anode materials for LIBs. The electrochemical performance of the TiO2/Sb2O3 composite anode with different ratios of TiO2 to Sb2O3 was evaluated by galvanostatic charge/discharge, rate performance and cyclic voltammetry. The 3:1 (TiO2:Sb2O3) composite anode delivered the highest capacity compared to those of the TiO2, SbO3, 1:1 (TiO2:Sb2O3) and 1:4 (TiO2:Sb2O3) electrodes. The TiO2@Sb2O3 composite anode with a 3:1 ratio exhibited a stabilized capacity of 536 mAh g−1 after 100 cycles at 100 mA g−1 and showed excellent rate performance, with current densities between 50 and 500 mA g−1. The improved electrochemical performance was attributed to the synergistic effect of TiO2 (i.e., the coating of Sb2O3 with TiO2) on reducing the volume change of the Sb anode material after prolonged charge/discharge cycles and on maintaining a stable interface between the electrolyte and the composite electrode material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmg完成签到,获得积分20
刚刚
xW发布了新的文献求助20
刚刚
2秒前
爆米花应助宓鲂采纳,获得10
5秒前
小二郎应助山猪吃细糠采纳,获得10
6秒前
Owen应助龙傲天采纳,获得10
7秒前
Lshang完成签到,获得积分10
7秒前
8秒前
8秒前
liuzhanyu发布了新的文献求助10
9秒前
WF完成签到,获得积分10
11秒前
言亦云完成签到,获得积分10
12秒前
12秒前
LZJ完成签到,获得积分10
13秒前
lovence发布了新的文献求助10
14秒前
阿哇完成签到,获得积分10
14秒前
瀚霖发布了新的文献求助10
15秒前
liuzhanyu完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
19秒前
龙傲天发布了新的文献求助10
19秒前
李元堯的狗完成签到,获得积分10
20秒前
21秒前
nini完成签到,获得积分10
21秒前
迪迦发布了新的文献求助10
22秒前
mhh发布了新的文献求助10
23秒前
23秒前
24秒前
wangxiaobin发布了新的文献求助10
26秒前
fbwg发布了新的文献求助10
26秒前
26秒前
Cambridge完成签到,获得积分10
30秒前
30秒前
欣欣发布了新的文献求助10
30秒前
xiaoliume完成签到,获得积分10
31秒前
31秒前
拓片完成签到,获得积分20
31秒前
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472