Metasurface Enabled Multi‐Target and Multi‐Wavelength Diffraction Neural Networks

衍射 人工神经网络 波长 计算机科学 材料科学 光学 物理 人工智能
作者
Haoxiang Chi,Xiaofei Zang,Teng Zhang,Guannan Wang,Zhiyuan Fan,Yiming Zhu,Xianzhong Chen,Songlin Zhuang
出处
期刊:Laser & Photonics Reviews [Wiley]
卷期号:19 (1) 被引量:26
标识
DOI:10.1002/lpor.202401178
摘要

Abstract Benefiting from low power consumption and high processing speed, there is a growing interest in diffraction neural networks (DNNs), which are typically showcased with 3D printing devices, leading to large volumes, high costs, and low levels of integration. Metasurfaces can desirably manipulate wavefronts of electromagnetic waves, providing a compact platform for mimicking DNNs with novel functions. Although multi‐wavelength and multi‐target recognition provides a richer and more detailed understanding of complex environments, existing architectures are primarily trained to classify a single target at a specific wavelength. A metasurface approach is proposed to design multiplexed DNNs that can classify multiple targets and spatial sequences across various wavelengths in multiple channels. To realize multi‐task processing, the dielectric metasurface is designed based on phase and wavelength multiplexing, which can integrate multi‐target DNNs with different tasks such as operating at distinct wavelengths and classifying diverse targets. The efficacy of this method is exemplified through the numerical simulation and experimental demonstration of recognizing a single target with two wavelengths, two targets at a single wavelength, and two targets at dual wavelengths. This compact metasurface approach enables the design of multi‐target and multi‐wavelength DNNs, opening a new window to develop massively parallel processing and versatile artificial intelligence systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Xixicccccccc发布了新的文献求助10
1秒前
zhuling发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
科研通AI6.1应助LS采纳,获得10
4秒前
Ava应助xiaomeng采纳,获得10
5秒前
6秒前
稳重的向日葵完成签到,获得积分10
6秒前
7秒前
Good39发布了新的文献求助10
7秒前
LYB发布了新的文献求助10
8秒前
8秒前
坦率灵槐应助草木采纳,获得10
9秒前
大观天下发布了新的文献求助10
9秒前
9秒前
11秒前
ljc2完成签到,获得积分10
11秒前
哆来米发布了新的文献求助10
12秒前
wzy完成签到 ,获得积分10
13秒前
13秒前
Ava应助淡然绝山采纳,获得10
13秒前
13秒前
15秒前
aeolianbells发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
Rw发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
EchoH应助单纯你杰采纳,获得10
19秒前
19秒前
aa发布了新的文献求助10
20秒前
大意的初之完成签到,获得积分10
20秒前
高大破茧发布了新的文献求助10
21秒前
21秒前
小文殊发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738458
求助须知:如何正确求助?哪些是违规求助? 5377795
关于积分的说明 15337854
捐赠科研通 4881463
什么是DOI,文献DOI怎么找? 2623561
邀请新用户注册赠送积分活动 1572306
关于科研通互助平台的介绍 1529100