Brewer’s spent grain (BSG), the main lignocellulosic by-product of the beer industry, represents an abundant yet underutilized resource with high potential for valorization. This study presents an integrated biorefinery approach to convert BSG into second-generation (2G) ethanol, bioactive vinasse for plant growth promotion, and fungal biomass as a potential mycoprotein source. The biomass was first subjected to biological delignification using the white-rot fungus Ganoderma lucidum, after which two valorization routes were explored: (i) evaluation of the fungal biomass as a mycoprotein candidate and (ii) alcoholic fermentation for ethanol production. For the latter, three pretreatment strategies were assessed (diluted sulfuric acid and two deep eutectic solvents (DESs) based on choline chloride combined with either glycerol or lactic acid) followed by a one-pot enzymatic saccharification and fermentation using Kluyveromyces marxianus SLP1. The highest ethanol yield on substrate (YP/S) was achieved with [Ch]Cl:lactic acid pretreatment (0.46 g/g, 89.32% of theoretical). Vinasse, recovered after distillation, was characterized for organic acid content and tested on Solanum lycopersicum seed germination, showing promising biostimulant activity. Overall, this work highlights the potential of BSG as a sustainable feedstock within circular economy models, enabling the production of multiple bio-based products from a single residue.