Few-Shot Industrial Meter Detection Based on Sim-to-Real Domain Adaptation and Category Augmentation

分类器(UML) 领域(数学分析) 人工智能 计算机科学 域适应 目标检测 符号 机器学习 计算机视觉 模式识别(心理学) 数学 数学分析 算术
作者
Ming Zeng,Shutong Zhong,Leijiao Ge
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10
标识
DOI:10.1109/tim.2023.3332939
摘要

Rapid and accurate detection of industrial meters in complex scenarios is an essential step toward inspection robot automatic meter recognition. Deep learning (DL) is a promising solution. However, due to the lack of large-scale public industrial meter image datasets, it is very difficult to train industrial meter detection models based on DL. Therefore, in this article, we combine the image generation technique and sim-to-real domain adaption technique to address the problem of few-shot industrial meter detection in complex scenarios. Specifically, we use Stable Diffusion to generate abundant virtual samples as the source domain dataset by inputting textual prompts. A small number of real samples are used as the target domain dataset. In addition, to attenuate the effect of domain shift, we propose a domain adaptation object detection framework based on category augmentation. This framework introduces domain information into the classifier and combines uncertainty estimation, which not only eliminates the training of domain classifiers in traditional adversarial learning-based domain adaptation algorithms but also facilitates feature alignment between source domain and target domain. Experiments show that the framework achieves 50.8% mAP50:95 and $55.0\% F1$ score, which outperforms the network trained with only real images by 8.3% mAP50:95 and $8.7\% F1$ score. We can achieve close performance with only 25% of the target domain samples with the help of the source domain dataset. Moreover, our method also outperforms other state-of-the-art methods in supervised domain adaptation object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助超帅的访云采纳,获得10
1秒前
帅气一刀发布了新的文献求助10
1秒前
科研通AI5应助愤怒的千凝采纳,获得10
1秒前
NexusExplorer应助可耐的元容采纳,获得10
2秒前
2秒前
完美世界应助bhappy21采纳,获得10
2秒前
2秒前
fangfang发布了新的文献求助10
2秒前
吴昊发布了新的文献求助10
2秒前
今后应助Knight采纳,获得10
3秒前
wudi发布了新的文献求助10
3秒前
4秒前
小仙完成签到,获得积分20
5秒前
SciGPT应助南音采纳,获得30
5秒前
orixero应助刘小仟采纳,获得10
5秒前
天天快乐应助乘风采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
威武的匕发布了新的文献求助10
7秒前
小代完成签到,获得积分10
7秒前
Cain完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
科研通AI2S应助典雅的静采纳,获得10
8秒前
9秒前
9秒前
NikiJu完成签到,获得积分10
9秒前
张豪杰完成签到,获得积分10
10秒前
10秒前
梧桐发布了新的文献求助10
11秒前
剩饭的狗发布了新的文献求助10
11秒前
刘家成发布了新的文献求助10
12秒前
娜娜果发布了新的文献求助10
12秒前
13秒前
mysk发布了新的文献求助10
13秒前
fls221完成签到,获得积分10
13秒前
温暖发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786253
求助须知:如何正确求助?哪些是违规求助? 3332038
关于积分的说明 10252966
捐赠科研通 3047287
什么是DOI,文献DOI怎么找? 1672503
邀请新用户注册赠送积分活动 801315
科研通“疑难数据库(出版商)”最低求助积分说明 760141