三乙胺
水蒸气
二氧化氮
接口(物质)
材料科学
热解
氮气
化学工程
化学
分子
有机化学
吉布斯等温线
工程类
作者
Jiayin Han,Dehao Kong,Weirong Zhou,Yubing Gao,Yuan Gao,Guannan Liu,Geyu Lu
标识
DOI:10.1016/j.snb.2023.134491
摘要
Nitrogen dioxide (NO2) and triethylamine (TEA) vapor are two typical reactive nitrogen species harmful to personal health and the environment. Thus, multi-functional and reliable sensors were momentous. Herein, the interface engineering of MOF-derived In2O3 with various contents of oxygen vacancy (OV) and different crystalline phases was achieved via pyrolysis of NH2-MIL-68(In) at different temperatures. High-proportional mixed hexagonal and cubic crystalline phases were presented in the MOF-derived In2O3 obtained by pyrolysis of NH2-MIL-68(In) at 400 °C (MOF-In2O3-400). Benefiting from the larger surface and interface area, MOF-In2O3-400 exhibited abundant OV and improved gas-sensing performance compared with the samples obtained at 500 °C and 600 °C. Interestingly, the MOF-derived In2O3 sensors exhibited dual-selective and ppb-level detection of NO2 and TEA vapor at distinct optimum operating temperatures. MOF-In2O3-400 exhibited ultra-high response of 1210 to 200 ppb NO2, and can detect as low as 1 ppb NO2 at 30 °C and TEA vapor as low as 500 ppb at 200 °C. It was also assessed for excellent long-term stability up to 120 days. As a practical demonstration, a prototype device was fabricated on an integrated circuit platform to issue a warning when NO2 or TEA concentrations exceeded the safety thresholds. The results indicate that the MOF-In2O3-400 is an excellent candidate in temperature-dependent dual-functional gas sensors towards NO2 and TEA vapor.
科研通智能强力驱动
Strongly Powered by AbleSci AI