亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural network-based variable stiffness impedance control for internal/external forces tracking of dual-arm manipulators under uncertainties

控制理论(社会学) 控制器(灌溉) 刚度 阻抗控制 人工神经网络 跟踪(教育) 理论(学习稳定性) Lyapunov稳定性 计算机科学 工程类 人工智能 机器人 控制(管理) 结构工程 生物 农学 机器学习 教育学 心理学
作者
Yufei Zhou,Zhongcan Li,Yanhui Li,Mingchao Zhu
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:141: 105714-105714
标识
DOI:10.1016/j.conengprac.2023.105714
摘要

The desired interaction between manipulators, objects, and environments has resulted in the internal/external force control for dual-arm manipulators being in increasing demand. Consequently, this study focused on the internal/external force tracking for dual-arm manipulator systems under external disturbances, geometries, and stiffness uncertainties which continuously lead to unsatisfactory internal force tracking. The proposed scheme is based on a two-level adaptive impedance control scheme, where the stiffness coefficient is adjusted to adapt to uncalibrated objects. An object-level hybrid impedance controller was used to regulate the external disturbance to produce a compliant response. A manipulator-level neural network-based variable stiffness impedance controller (NNVSIC) was proposed to regulate the internal force under various uncertainties. Additionally, an adaptive wavelet neural network was designed to compensate for the geometric estimation errors of the object. The variable stiffness coefficient could automatically adapt to an unknown object during the cooperation process. One advantage of the proposed method is that no prior knowledge was required. The same controller parameters could be adapted to various objects. The asymptotic stability of the proposed NNVSIC was proven via Lyapunov stability analysis. A series of experiments were conducted using two self-developed nine-degrees-of-freedom redundant manipulators. Furthermore, hard and soft objects of various geometries and stiffnesses were used to verify the effectiveness of the algorithm. The experimental results demonstrated the efficiency and superiority of the proposed controller through performance comparison with various algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺的芹菜完成签到,获得积分10
23秒前
32秒前
34秒前
包容囧完成签到,获得积分20
38秒前
23应助menyu采纳,获得30
42秒前
48秒前
54秒前
真实的枕头完成签到,获得积分10
57秒前
screct完成签到,获得积分10
1分钟前
希望天下0贩的0应助易达采纳,获得30
1分钟前
贪玩的月饼完成签到 ,获得积分10
1分钟前
xinzhuoyang完成签到 ,获得积分10
1分钟前
1分钟前
naitangkeke发布了新的文献求助10
1分钟前
lysbor完成签到,获得积分20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得80
1分钟前
今后应助Hour采纳,获得30
1分钟前
1分钟前
易达发布了新的文献求助30
1分钟前
所所应助易达采纳,获得10
1分钟前
外向电脑完成签到,获得积分20
2分钟前
共享精神应助naitangkeke采纳,获得10
2分钟前
2分钟前
小摩尔完成签到 ,获得积分10
2分钟前
naitangkeke发布了新的文献求助10
2分钟前
迅速随阴完成签到 ,获得积分10
2分钟前
善学以致用应助naitangkeke采纳,获得10
2分钟前
ab完成签到,获得积分10
3分钟前
包容囧发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
naitangkeke发布了新的文献求助10
3分钟前
3分钟前
西红柿有饭吃吗完成签到,获得积分20
3分钟前
3分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091429
求助须知:如何正确求助?哪些是违规求助? 3630221
关于积分的说明 11507517
捐赠科研通 3341782
什么是DOI,文献DOI怎么找? 1836873
邀请新用户注册赠送积分活动 904789
科研通“疑难数据库(出版商)”最低求助积分说明 822544