Machine learning models demonstrate that clinicopathologic variables are comparable to gene expression prognostic signature in predicting survival in uveal melanoma

签名(拓扑) 基因签名 医学 肿瘤科 黑色素瘤 基因表达 基因 表达式(计算机科学) 生物 计算生物学 计算机科学 癌症研究 遗传学 数学 几何学 程序设计语言
作者
Piotr Donizy,Mateusz Krzyziński,Anna Markiewicz,Paweł Karpiński,Krzysztof Kotowski,Artur Kowalik,Jolanta Orłowska-Heitzman,Bożena Romanowska‐Dixon,Przemysław Biecek,Mai P. Hoang
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:174: 251-260 被引量:14
标识
DOI:10.1016/j.ejca.2022.07.031
摘要

Abstract

Purpose

Since molecular assays are not accessible to all uveal melanoma patients, we aim to identify cost-effective prognostic tool in risk stratification using machine learning models based on routine histologic and clinical variables.

Experimental design

We identified important prognostic parameters in a discovery cohort of 164 enucleated primary uveal melanomas from 164 patients without prior therapies. We then validated the prognostic prediction of top important parameters identified in the discovery cohort using 80 uveal melanomas from the Tumor Cancer Genome Atlas database with available gene expression prognostic signature (GEPS). The performance of three different survival analysis models (Cox proportional hazards (CPH), random survival forest (RSF), and survival gradient boosting (SGB)) was compared against GEPS using receiver operating curves (ROC).

Results

In all three selection methods, BAP1 status, nucleoli size, age, mitotic rate per 1 mm2, and ciliary body infiltration were identified as significant overall survival (OS) predictors; and BAP1 status, nucleoli size, largest basal tumor diameter, tumor-infiltrating lymphocyte density, and tumor-associated macrophage density were identified as significant progression-free survival (PFS) predictors. ROC plots for the median survival time point showed that significant parameters in SGB studied model can predict OS better than GEPS. For PFS, SGB model performed similarly to GEPS. The time-dependent area under the curve (AUC) showed SGB model performing better than GEPS in predicting OS and metastatic risk.

Conclusions

Our study shows that routine histologic and clinical variables are adequate for patient risk stratification in comparison with not readily accessible GEPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
chenqiumu应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
修仙中应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
科研小虫应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
三环类完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
momo应助magickou采纳,获得10
2秒前
小夏完成签到,获得积分10
3秒前
4秒前
6秒前
一梦完成签到,获得积分10
7秒前
7秒前
8秒前
TQY发布了新的文献求助10
8秒前
善学以致用应助guoweismmu采纳,获得20
8秒前
9秒前
糟糕的学姐完成签到,获得积分10
9秒前
Hello应助破晓星采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助杨阳洋采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287393
求助须知:如何正确求助?哪些是违规求助? 4439752
关于积分的说明 13822752
捐赠科研通 4321833
什么是DOI,文献DOI怎么找? 2372149
邀请新用户注册赠送积分活动 1367753
关于科研通互助平台的介绍 1331183