Target drift discriminative network based on deep learning in visual tracking

判别式 Softmax函数 人工智能 计算机科学 模式识别(心理学) 跟踪(教育) 眼动 最大化 集合(抽象数据类型) 计算机视觉 深度学习 数学 心理学 教育学 数学优化 程序设计语言
作者
Zhiqiang Hou,Zhuo Wang,Lei Pu,Sugang Ma,Zhilong Yang,Jiulun Fan
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (04) 被引量:3
标识
DOI:10.1117/1.jei.31.4.043052
摘要

In visual tracking, sometimes the target response value is high, but it is not the tracking result, which can result in the wrong judgment. Moreover, the threshold to decide the tracking result needs to be set artificially in the traditional discriminative methods. We propose a deep learning-based target drift discriminative network to judge whether the target is lost. We design a lightweight network without the threshold, using four convolutional layers, three full connection layers, and the Softmax function to judge the tracking results. When training the network, the established positive and negative samples are used, and we select difficult samples for further training to achieve a better target discriminative effect. Finally, a target drift discriminative network is introduced into the accurate tracking by overlap maximization. When it is judged that the target is lost, another search area is selected to quickly find the target. Numerous experiments show that our method achieves the best performance on datasets UAV123, UAV20L, and VOT2018-LT, especially on the UAV20L dataset, for which the tracking precision and tracking success rate are improved by 3.7% and 2.8%. Compared with several other classical threshold discriminative criteria, we do not need to set the threshold artificially and have better judgment performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wh发布了新的文献求助10
1秒前
3秒前
4秒前
科研通AI2S应助Bin_Liu采纳,获得10
4秒前
4秒前
4秒前
铀氪锂锂发布了新的文献求助10
5秒前
行者发布了新的文献求助10
5秒前
橘如完成签到,获得积分20
5秒前
七曜完成签到,获得积分10
5秒前
0℃发布了新的文献求助10
5秒前
6秒前
悄悄.完成签到,获得积分10
7秒前
7秒前
nn发布了新的文献求助10
8秒前
科研通AI5应助吨吨喝水采纳,获得10
8秒前
高大草莓完成签到 ,获得积分10
9秒前
诸葛御风应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Xiaoxiao应助科研通管家采纳,获得20
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
10秒前
潇湘夜雨完成签到,获得积分10
10秒前
打打应助科研通管家采纳,获得30
10秒前
大个应助科研通管家采纳,获得10
10秒前
vlots应助科研通管家采纳,获得30
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Haoxiang发布了新的文献求助10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
vlots应助科研通管家采纳,获得30
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
诸葛御风应助科研通管家采纳,获得20
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743