亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stacked generalization

一般化 集合(抽象数据类型) 算法 计算机科学 泛化误差 任务(项目管理) 人工智能 空格(标点符号) 数学 人工神经网络 操作系统 数学分析 经济 管理 程序设计语言
作者
David H. Wolpert
出处
期刊:Neural Networks [Elsevier]
卷期号:5 (2): 241-259 被引量:6844
标识
DOI:10.1016/s0893-6080(05)80023-1
摘要

This paper introduces stacked generalization, a scheme for minimizing the generalization error rate of one or more generalizers. Stacked generalization works by deducing the biases of the generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in a second space whose inputs are (for example) the guesses of the original generalizers when taught with part of the learning set and trying to guess the rest of it, and whose output is (for example) the correct guess. When used with multiple generalizers, stacked generalization can be seen as a more sophisticated version of cross-validation, exploiting a strategy more sophisticated than cross-validation's crude winner-takes-all for combining the individual generalizers. When used with a single generalizer, stacked generalization is a scheme for estimating (and then correcting for) the error of a generalizer which has been trained on a particular learning set and then asked a particular question. After introducing stacked generalization and justifying its use, this paper presents two numerical experiments. The first demonstrates how stacked generalization improves upon a set of separate generalizers for the NETtalk task of translating text to phonemes. The second demonstrates how stacked generalization improves the performance of a single surface-fitter. With the other experimental evidence in the literature, the usual arguments supporting cross-validation, and the abstract justifications presented in this paper, the conclusion is that for almost any real-world generalization problem one should use some version of stacked generalization to minimize the generalization error rate. This paper ends by discussing some of the variations of stacked generalization, and how it touches on other fields like chaos theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
yangzai完成签到 ,获得积分0
6秒前
7秒前
小武同学完成签到,获得积分20
12秒前
33秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
41秒前
53秒前
1分钟前
1分钟前
1分钟前
Dryang完成签到 ,获得积分10
1分钟前
黑尼格发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
thronn完成签到,获得积分10
2分钟前
2分钟前
2分钟前
扣宝儿发布了新的文献求助10
2分钟前
连安阳完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494004
求助须知:如何正确求助?哪些是违规求助? 4591889
关于积分的说明 14434935
捐赠科研通 4524510
什么是DOI,文献DOI怎么找? 2478803
邀请新用户注册赠送积分活动 1463758
关于科研通互助平台的介绍 1436596