兰姆达
衰减
幂律
粒度
指数
波长
物理
分布(数学)
散射
超声波传感器
粒度分布
光学
计算物理学
数学
数学分析
材料科学
统计
声学
化学
粒径
复合材料
物理化学
哲学
语言学
作者
Aran Anderson,D. Nicoletti
出处
期刊:Springer eBooks
[Springer Nature]
日期:1996-01-01
卷期号:: 1503-1507
标识
DOI:10.1007/978-1-4613-0383-1_196
摘要
The overall research goal of this project is the nondestructive measurement of grain-size distribution parameters using ultrasonic attenuation. Ultrasonic attenuation α is dependent upon the sound wavelength (λ), the size of the grains (D), and in many cases elastic constants and sound velocities of the material. Assuming that multiple scattering can be ignored, the expression for the wavelength dependence of the attenuation is 1 $$ \alpha (\lambda ) = \int\limits_0^\infty {N(D)\,\alpha (\lambda, D)\,} \,dD $$ where N(D) is the grain-size distribution. In previous work [1] the sizes were assumed to be distributed following a power-law with exponent γ: 2 $$ N(D) = K{D^{ - \gamma }},0 < D < \infty $$ Different justifications for this assumption have been provided [1]. After substituting the power-law expression for the grain-size distribution, the attenuation was shown to be a power-law: 3 $$ \alpha (\lambda ) = K'\,{\lambda^{ - \gamma }} $$
科研通智能强力驱动
Strongly Powered by AbleSci AI