BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation

计算机科学 分割 人工智能 特征(语言学) 推论 语义学(计算机科学) 频道(广播) 增采样 模式识别(心理学) 深度学习 图像(数学) 计算机网络 语言学 哲学 程序设计语言
作者
Changqian Yu,Changxin Gao,Jingbo Wang,Gang Yu,Chunhua Shen,Nong Sang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (11): 3051-3068 被引量:1396
标识
DOI:10.1007/s11263-021-01515-2
摘要

Low-level details and high-level semantics are both essential to the semantic segmentation task. However, to speed up the model inference, current approaches almost always sacrifice the low-level details, leading to a considerable decrease in accuracy. We propose to treat these spatial details and categorical semantics separately to achieve high accuracy and high efficiency for real-time semantic segmentation. For this purpose, we propose an efficient and effective architecture with a good trade-off between speed and accuracy, termed Bilateral Segmentation Network (BiSeNet V2). This architecture involves the following: (i) A detail branch, with wide channels and shallow layers to capture low-level details and generate high-resolution feature representation; (ii) A semantics branch, with narrow channels and deep layers to obtain high-level semantic context. The detail branch has wide channel dimensions and shallow layers, while the semantics branch has narrow channel dimensions and deep layers. Due to the reduction in the channel capacity and the use of a fast-downsampling strategy, the semantics branch is lightweight and can be implemented by any efficient model. We design a guided aggregation layer to enhance mutual connections and fuse both types of feature representation. Moreover, a booster training strategy is designed to improve the segmentation performance without any extra inference cost. Extensive quantitative and qualitative evaluations demonstrate that the proposed architecture shows favorable performance compared to several state-of-the-art real-time semantic segmentation approaches. Specifically, for a $$2048\times 1024$$ input, we achieve 72.6% Mean IoU on the Cityscapes test set with a speed of 156 FPS on one NVIDIA GeForce GTX 1080 Ti card, which is significantly faster than existing methods, yet we achieve better segmentation accuracy. The code and trained models are available online at https://git.io/BiSeNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
哈哈发布了新的文献求助10
3秒前
li完成签到,获得积分10
4秒前
4秒前
科研通AI6应助专注灵凡采纳,获得10
5秒前
5秒前
顾矜应助酸菜余采纳,获得10
5秒前
科研通AI6应助十三采纳,获得10
9秒前
10秒前
10秒前
祖f完成签到,获得积分10
10秒前
细心的思天完成签到 ,获得积分10
13秒前
迷路达发布了新的文献求助10
15秒前
科研通AI6应助丁丁鱼采纳,获得10
15秒前
健壮的鸽子完成签到,获得积分10
15秒前
16秒前
科研通AI6应助轻松板栗采纳,获得30
16秒前
16秒前
16秒前
17秒前
瘦瘦的枫叶完成签到 ,获得积分10
17秒前
SciGPT应助universe采纳,获得20
17秒前
17秒前
风里等你发布了新的文献求助10
17秒前
张鸿飞发布了新的文献求助10
19秒前
19秒前
思源应助Lothar采纳,获得10
20秒前
20秒前
ycd发布了新的文献求助10
21秒前
24秒前
Lucas应助小阁老来啦采纳,获得10
25秒前
Ressia0727发布了新的文献求助10
25秒前
现实的飞风完成签到,获得积分10
27秒前
共享精神应助GGBoy采纳,获得10
28秒前
RKTTKT应助小白采纳,获得20
30秒前
文艺的平露完成签到,获得积分20
30秒前
辛木完成签到 ,获得积分10
31秒前
如意山蝶完成签到 ,获得积分10
32秒前
33秒前
Ressia0727完成签到,获得积分10
33秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339044
求助须知:如何正确求助?哪些是违规求助? 4475985
关于积分的说明 13930102
捐赠科研通 4371418
什么是DOI,文献DOI怎么找? 2401804
邀请新用户注册赠送积分活动 1394843
关于科研通互助平台的介绍 1366677