Graph Fusion Network-Based Multimodal Learning for Freezing of Gait Detection

计算机科学 模式 人工智能 多模式学习 模态(人机交互) 冗余(工程) 深度学习 机器学习 社会科学 操作系统 社会学
作者
Kun Hu,Zhiyong Wang,Kaylena A. Ehgoetz Martens,Markus Hagenbuchner,Mohammed Bennamoun,Ah Chung Tsoi,Simon J.G. Lewis
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1588-1600 被引量:30
标识
DOI:10.1109/tnnls.2021.3105602
摘要

Freezing of gait (FoG) is identified as a sudden and brief episode of movement cessation despite the intention to continue walking. It is one of the most disabling symptoms of Parkinson's disease (PD) and often leads to falls and injuries. Many computer-aided FoG detection methods have been proposed to use data collected from unimodal sources, such as motion sensors, pressure sensors, and video cameras. However, there are limited efforts of multimodal-based methods to maximize the value of all the information collected from different modalities in clinical assessments and improve the FoG detection performance. Therefore, in this study, a novel end-to-end deep architecture, namely graph fusion neural network (GFN), is proposed for multimodal learning-based FoG detection by combining footstep pressure maps and video recordings. GFN constructs multimodal graphs by treating the encoded features of each modality as vertex-level inputs and measures their adjacency patterns to construct complementary FoG representations, thus reducing the representation redundancy among different modalities. In addition, since GFN is devised to process multimodal graphs of arbitrary structures, it is expected to achieve superior performance with inputs containing missing modalities, compared to the alternative unimodal methods. A multimodal FoG dataset was collected, which included clinical assessment videos and footstep pressure sequences of 340 trials from 20 PD patients. Our proposed GFN demonstrates a great promise of multimodal FoG detection with an area under the curve (AUC) of 0.882. To the best of our knowledge, this is one of the first studies to utilize multimodal learning for automated FoG detection, which offers significant opportunities for better patient assessments and clinical trials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
yancaizhi给yancaizhi的求助进行了留言
刚刚
爆米花应助科研通管家采纳,获得30
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
今后应助zhangxi采纳,获得10
刚刚
罗罗应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
llllll发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
天天快乐应助科研小白采纳,获得10
4秒前
casino应助无心的浩轩采纳,获得10
5秒前
5秒前
lseven发布了新的文献求助10
6秒前
汉堡包应助哭泣忆文采纳,获得10
7秒前
元馨完成签到,获得积分10
7秒前
邓邵斌发布了新的文献求助10
7秒前
8秒前
文静的山水完成签到,获得积分10
8秒前
8秒前
喝酸奶不舔盖完成签到 ,获得积分0
8秒前
robo完成签到,获得积分10
9秒前
9秒前
挚缘发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4402986
求助须知:如何正确求助?哪些是违规求助? 3889680
关于积分的说明 12105949
捐赠科研通 3534341
什么是DOI,文献DOI怎么找? 1939304
邀请新用户注册赠送积分活动 980109
科研通“疑难数据库(出版商)”最低求助积分说明 877107