Graph Fusion Network-Based Multimodal Learning for Freezing of Gait Detection

计算机科学 模式 人工智能 多模式学习 模态(人机交互) 冗余(工程) 深度学习 机器学习 社会科学 操作系统 社会学
作者
Kun Hu,Zhiyong Wang,Kaylena A. Ehgoetz Martens,Markus Hagenbuchner,Mohammed Bennamoun,Ah Chung Tsoi,Simon J.G. Lewis
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1588-1600 被引量:30
标识
DOI:10.1109/tnnls.2021.3105602
摘要

Freezing of gait (FoG) is identified as a sudden and brief episode of movement cessation despite the intention to continue walking. It is one of the most disabling symptoms of Parkinson's disease (PD) and often leads to falls and injuries. Many computer-aided FoG detection methods have been proposed to use data collected from unimodal sources, such as motion sensors, pressure sensors, and video cameras. However, there are limited efforts of multimodal-based methods to maximize the value of all the information collected from different modalities in clinical assessments and improve the FoG detection performance. Therefore, in this study, a novel end-to-end deep architecture, namely graph fusion neural network (GFN), is proposed for multimodal learning-based FoG detection by combining footstep pressure maps and video recordings. GFN constructs multimodal graphs by treating the encoded features of each modality as vertex-level inputs and measures their adjacency patterns to construct complementary FoG representations, thus reducing the representation redundancy among different modalities. In addition, since GFN is devised to process multimodal graphs of arbitrary structures, it is expected to achieve superior performance with inputs containing missing modalities, compared to the alternative unimodal methods. A multimodal FoG dataset was collected, which included clinical assessment videos and footstep pressure sequences of 340 trials from 20 PD patients. Our proposed GFN demonstrates a great promise of multimodal FoG detection with an area under the curve (AUC) of 0.882. To the best of our knowledge, this is one of the first studies to utilize multimodal learning for automated FoG detection, which offers significant opportunities for better patient assessments and clinical trials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助苹果采纳,获得10
1秒前
1秒前
怕黑向秋完成签到,获得积分10
1秒前
羊羊完成签到 ,获得积分10
2秒前
张景赛完成签到 ,获得积分10
2秒前
刘泽发布了新的文献求助10
3秒前
vv发布了新的文献求助10
4秒前
华仔应助wumandong采纳,获得10
5秒前
Khr1stINK完成签到,获得积分10
6秒前
imol完成签到,获得积分20
8秒前
www完成签到 ,获得积分10
8秒前
无花果应助ellieou采纳,获得10
8秒前
8秒前
davyean完成签到,获得积分10
10秒前
李美兰完成签到 ,获得积分10
11秒前
12秒前
14秒前
14秒前
花花发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
老实的南风完成签到 ,获得积分10
17秒前
SciGPT应助乆乆乆乆采纳,获得10
17秒前
18秒前
zhao完成签到,获得积分10
18秒前
liu完成签到 ,获得积分10
18秒前
华仔应助黄金回旋采纳,获得10
19秒前
晚湖驳回了fei应助
20秒前
采薇发布了新的文献求助10
20秒前
安平完成签到,获得积分10
20秒前
是温柔本身完成签到,获得积分20
20秒前
21秒前
ZXW完成签到,获得积分20
21秒前
Rhan完成签到,获得积分10
22秒前
lyx完成签到,获得积分10
23秒前
寻道图强应助Hanoi347采纳,获得30
24秒前
刘泽完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171