Learning to Generate SAR Images With Adversarial Autoencoder

计算机科学 人工智能 鉴别器 合成孔径雷达 自编码 深度学习 模式识别(心理学) 方向(向量空间) 卷积神经网络 自动目标识别 计算机视觉 数学 几何学 电信 探测器
作者
Qian Song,Feng Xu,Xiao Xiang Zhu,Ya‐Qiu Jin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:45
标识
DOI:10.1109/tgrs.2021.3086817
摘要

Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from sparsely distributed training samples and rapid angular variations due to scattering scintillation. Thus, data-driven SAR target recognition is considered a typical few-shot learning (FSL) task. This article first reviews the key issues of FSL and provides a definition of the FSL task. A novel adversarial autoencoder (AAE) is then proposed as an SAR representation and generation network. It consists of a generator network that decodes target knowledge to SAR images and an adversarial discriminator network that not only learns to discriminate "fake" generated images from real ones but also encodes the input SAR image back to target knowledge. The discriminator employs progressively expanding convolution layers and a corresponding layer-by-layer training strategy. It uses two cyclic loss functions to enforce consistency between the inputs and outputs. Moreover, rotated cropping is introduced as a mechanism to address the challenge of representing the target orientation. The moving and stationary Target recognition (MSTAR) 7-target dataset is used to evaluate the AAE's performance, and the results demonstrate its ability to generate SAR images with aspect angular diversity. Using only 90 training samples with at least 25° of orientation interval, the trained AAE is able to generate the remaining 1748 samples of other orientation angles with an unprecedented level of fidelity. Thus, it can be used for data augmentation in SAR target recognition FSL tasks. Our experimental results show that the AAE could boost the test accuracy by 5.77%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助余晓采纳,获得10
1秒前
英俊的铭应助zhaoning123采纳,获得10
2秒前
炫潮浪子完成签到,获得积分10
2秒前
2秒前
xiaoning完成签到,获得积分10
2秒前
4秒前
bias完成签到,获得积分10
5秒前
5秒前
婷子完成签到 ,获得积分10
5秒前
禹映安发布了新的文献求助10
6秒前
科研通AI5应助Jerrylove采纳,获得10
6秒前
6秒前
Miianlli发布了新的文献求助10
8秒前
Lovev完成签到,获得积分10
8秒前
Xingkun_li完成签到,获得积分10
10秒前
烟花应助nail采纳,获得10
12秒前
13秒前
Jasper应助HY采纳,获得10
14秒前
香酥板栗完成签到,获得积分10
15秒前
KKIII完成签到,获得积分10
16秒前
别摆烂了完成签到,获得积分10
17秒前
黎梓玉关注了科研通微信公众号
17秒前
量子星尘发布了新的文献求助10
18秒前
小马甲应助淡然善斓采纳,获得10
18秒前
耍酷安蕾发布了新的文献求助10
18秒前
19秒前
Amyandjohn发布了新的文献求助10
20秒前
隔岸完成签到,获得积分10
21秒前
你好完成签到,获得积分20
21秒前
科研通AI6应助缥缈的又亦采纳,获得10
22秒前
22秒前
23秒前
依梦发布了新的文献求助10
23秒前
25秒前
浮游应助你好采纳,获得10
25秒前
26秒前
英俊的铭应助无心的火车采纳,获得10
27秒前
27秒前
zhames发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941396
求助须知:如何正确求助?哪些是违规求助? 4207446
关于积分的说明 13077705
捐赠科研通 3986303
什么是DOI,文献DOI怎么找? 2182555
邀请新用户注册赠送积分活动 1198146
关于科研通互助平台的介绍 1110389