Integrating Vehicle Positioning and Path Tracking Practices for an Autonomous Vehicle Prototype in Campus Environment

全球定位系统 惯性测量装置 模型预测控制 卡尔曼滤波器 计算机科学 里程计 运动学 实时动态 MATLAB语言 模拟 实时计算 控制工程 工程类 人工智能 控制(管理) 机器人 移动机器人 全球导航卫星系统应用 电信 物理 经典力学 操作系统
作者
Jui-An Yang,Chung‐Hsien Kuo
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (21): 2703-2703 被引量:8
标识
DOI:10.3390/electronics10212703
摘要

This paper presents the implementation of an autonomous electric vehicle (EV) project in the National Taiwan University of Science and Technology (NTUST) campus in Taiwan. The aim of this work was to integrate two important practices of realizing an autonomous vehicle in a campus environment, including vehicle positioning and path tracking. Such a project is helpful to the students to learn and practice key technologies of autonomous vehicles conveniently. Therefore, a laboratory-made EV was equipped with real-time kinematic GPS (RTK-GPS) to provide centimeter position accuracy. Furthermore, the model predictive control (MPC) was proposed to perform the path tracking capability. Nevertheless, the RTK-GPS exhibited some robust positioning concerns in practical application, such as a low update rate, signal obstruction, signal drift, and network instability. To solve this problem, a multisensory fusion approach using an unscented Kalman filter (UKF) was utilized to improve the vehicle positioning performance by further considering an inertial measurement unit (IMU) and wheel odometry. On the other hand, the model predictive control (MPC) is usually used to control autonomous EVs. However, the determination of MPC parameters is a challenging task. Hence, reinforcement learning (RL) was utilized to generalize the pre-trained datum value for the determination of MPC parameters in practice. To evaluate the performance of the RL-based MPC, software simulations using MATLAB and a laboratory-made, full-scale electric vehicle were arranged for experiments and validation. In a 199.27 m campus loop path, the estimated travel distance error was 0.82% in terms of UKF. The MPC parameters generated by RL also achieved a better tracking performance with 0.227 m RMSE in path tracking experiments, and they also achieved a better tracking performance when compared to that of human-tuned MPC parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moonchild完成签到 ,获得积分10
1秒前
时影发布了新的文献求助10
1秒前
科研通AI5应助成太采纳,获得10
1秒前
Yipou完成签到,获得积分10
3秒前
晓宇完成签到,获得积分10
4秒前
7秒前
怡然念之完成签到,获得积分10
10秒前
13秒前
WSH发布了新的文献求助10
14秒前
14秒前
阔达衬衫完成签到 ,获得积分10
17秒前
成太发布了新的文献求助10
18秒前
希望天下0贩的0应助晓宇采纳,获得10
22秒前
阔达衬衫关注了科研通微信公众号
22秒前
WSH完成签到,获得积分10
24秒前
华仔应助陌路采纳,获得10
25秒前
Cherry发布了新的文献求助10
30秒前
victor完成签到,获得积分10
30秒前
李爱国应助晓宇采纳,获得10
32秒前
34秒前
36秒前
丘比特应助李念采纳,获得30
36秒前
dff发布了新的文献求助10
39秒前
40秒前
wanci应助晓宇采纳,获得10
41秒前
怕黑香菇发布了新的文献求助10
42秒前
美合完成签到 ,获得积分10
45秒前
小高同学发布了新的文献求助10
45秒前
小蘑菇应助晓宇采纳,获得10
49秒前
温暖书文应助六尺巷采纳,获得10
50秒前
鲁卓林完成签到,获得积分10
52秒前
56秒前
Lucas应助晓宇采纳,获得10
58秒前
1分钟前
小生不才发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385