Trajectory Planning and Optimization for Robotic Machining Based On Measured Point Cloud

弹道 计算机科学 机器人 刚度 工业机器人 夹紧 机械加工 工程类 机械工程 人工智能 控制理论(社会学) 结构工程 天文 控制(管理) 物理
作者
Gang Wang,Wenlong Li,Cheng Jiang,Dahu Zhu,Zhongwei Li,Wei Xu,Huan Zhao,Han Ding
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (3): 1621-1637 被引量:61
标识
DOI:10.1109/tro.2021.3108506
摘要

Industrial robots are characterized by good flexibility and a large working space, and offer a new approach for the machining of large and complex parts with small machining allowances (extra material allowed for subsequent machining). Parts of this type (such as aircraft skin parts, wind turbine blades, etc.) are easily deformed due to their large scale and low stiffness. Therefore, these parts cannot be directly machined according to the designed model. A feasible method is to plan a robotic machining path by using the point clouds of parts after clamping from onsite measurement which contains inherent defects of measurement such as noise points and abrupt points. In this article, a novel method is proposed to plan and optimize a robotic machining path that meets the requirements of smoothness, dexterity, and stiffness based on the point cloud from onsite measurement. The dual nonuniform rational B-spline curves of the machining path points and tool axis points are generated at first. Next, an objective function of smoothness optimization is established to filter out the local mutation of the path by considering the constraints of both the deformation energy and the deviation. Then, the objective function of robot postures optimization is established to optimize dexterity and Cartesian stiffness of a robot during the machining process. To show the feasibility of the proposed method, simulation and experiments are carried out. It is proved that the proposed method can generate a smooth machining trajectory. The stability of joint rotation and the rigidity and dexterity of the robot are improved during the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
Just97发布了新的文献求助10
刚刚
1秒前
lcdt完成签到,获得积分10
1秒前
发炎的扁桃体完成签到,获得积分10
2秒前
2秒前
感恩发布了新的文献求助10
3秒前
聪明新筠完成签到,获得积分10
5秒前
华仔应助dd采纳,获得10
7秒前
7秒前
开朗的早晨完成签到,获得积分10
8秒前
8秒前
科研狗发布了新的文献求助10
8秒前
杨筱涵发布了新的文献求助10
9秒前
mayocoh发布了新的文献求助10
11秒前
11秒前
syalonyui完成签到,获得积分10
12秒前
13秒前
謓言完成签到 ,获得积分10
13秒前
LegendThree完成签到,获得积分10
15秒前
16秒前
CipherSage应助liang2508采纳,获得10
17秒前
17秒前
18秒前
万能图书馆应助mayocoh采纳,获得10
18秒前
19秒前
花花完成签到,获得积分10
19秒前
烟花应助士心采纳,获得10
20秒前
敏感的莺发布了新的文献求助10
21秒前
21秒前
MWY完成签到,获得积分10
21秒前
真银铃完成签到,获得积分10
22秒前
桐桐应助栗子醚纳米采纳,获得10
22秒前
嘟嘟嘟发布了新的文献求助10
22秒前
23秒前
所所应助毅诚菌采纳,获得10
23秒前
23秒前
浮浮完成签到,获得积分10
24秒前
24秒前
ywty发布了新的文献求助30
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381603
求助须知:如何正确求助?哪些是违规求助? 4504833
关于积分的说明 14019613
捐赠科研通 4414148
什么是DOI,文献DOI怎么找? 2424618
邀请新用户注册赠送积分活动 1417618
关于科研通互助平台的介绍 1395411