Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

光伏系统 学习迁移 计算机科学 人工神经网络 人工智能 深度学习 网格 特征(语言学) 机器学习 工程类 语言学 哲学 电气工程 几何学 数学
作者
Yugui Tang,Kuo Yang,Shujing Zhang,Zhen Zhang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:162: 112473-112473 被引量:136
标识
DOI:10.1016/j.rser.2022.112473
摘要

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然画板发布了新的文献求助10
刚刚
ZDSHI发布了新的文献求助30
1秒前
橘子发布了新的文献求助10
2秒前
纯真的问梅完成签到 ,获得积分10
2秒前
领导范儿应助随意采纳,获得10
2秒前
Zhi应助molingyue采纳,获得10
2秒前
2秒前
粗犷的凌兰完成签到,获得积分10
2秒前
Prejudice3完成签到,获得积分10
3秒前
幸运Q发布了新的文献求助30
3秒前
小星果茶发布了新的文献求助10
3秒前
4秒前
5秒前
呆小仙发布了新的文献求助10
5秒前
5秒前
wwwjy发布了新的文献求助10
5秒前
6秒前
迷人的冥完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
在水一方应助杨思睿采纳,获得10
10秒前
One发布了新的文献求助10
11秒前
11秒前
12秒前
kevin发布了新的文献求助10
14秒前
qinyaopanda应助zhanyk采纳,获得20
14秒前
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
云康肖完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助leng采纳,获得10
19秒前
暗中讨饭发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774852
求助须知:如何正确求助?哪些是违规求助? 5620046
关于积分的说明 15436926
捐赠科研通 4907323
什么是DOI,文献DOI怎么找? 2640592
邀请新用户注册赠送积分活动 1588479
关于科研通互助平台的介绍 1543394