亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach

选择性激光熔化 克里金 材料科学 参数统计 高斯过程 探地雷达 线性回归 超参数 激光功率缩放 水准点(测量) 高斯分布 机器学习 计算机科学 人工智能 激光器 复合材料 数学 统计 光学 地理 雷达 物理 微观结构 电信 量子力学 大地测量学
作者
Varad Maitra,Jing Shi,Cuiyuan Lu
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:78: 183-201 被引量:27
标识
DOI:10.1016/j.jmapro.2022.04.020
摘要

It is well known that slight changes in selective laser melting (SLM) process parameters may alter the outcome of mechanical and physical properties of the as-built material in a drastic and haphazard fashion. To overcome this, reliable property prediction models are most pertinent. In this study, a machine learning approach based on Gaussian Process Regression (GPR) is proposed to predict the relative density of as-built Ti-6Al-4V alloy manufactured via SLM, based on the most common input process parameters such as laser power, scanning speed, hatch spacing, and layer thickness, as well as an integrated input of volumetric energy density. A most comprehensive test dataset to train and verify GPR models was retrieved from literature papers that extensively investigated mechanical and physical properties of additively manufactured Ti-6Al-4V alloy. GPR models with four different kernel functions were analyzed and exponential GPR model with optimized hyperparameters was chosen as the most viable model for predicting as-built density of Ti-6Al-4V alloy. A parametric multiple linear regression (MLR) model was also presented and serves as a benchmark. When inferences were made on newer publication data, the GPR model and the MLR model predicted the densities with mean absolute errors (MAE) of 1.12% and 5.22% respectively. The inferior performance of the MLR model compared emphasizes the need of non-parametric supervised learning technique for SLM. To truly demonstrate the effectiveness of the proposed GPR model in real-world metal AM jobs, 22 experimental samples were printed. Predictions made on all the samples, when compared to their actual density values, resulted in MAE of 0.27%. Clearly, creation of most comprehensive mined data, kernel selection, and rigorous validation and verification of GPR model make this study one of its kind and prove the GPR model's predictive dexterity and the potential impact in the world of additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
嘻嘻哈哈应助科研通管家采纳,获得10
28秒前
嘻嘻哈哈应助科研通管家采纳,获得10
28秒前
嘻嘻哈哈应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
嘻嘻哈哈应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
30秒前
bingyv完成签到 ,获得积分10
41秒前
42秒前
43秒前
大力依白发布了新的文献求助50
48秒前
shaonianzu完成签到 ,获得积分10
52秒前
阿空完成签到 ,获得积分10
57秒前
汤317完成签到,获得积分10
1分钟前
1分钟前
RONG完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
坐宝马吃地瓜完成签到 ,获得积分10
1分钟前
1分钟前
lin发布了新的文献求助10
1分钟前
1分钟前
安琪发布了新的文献求助10
1分钟前
李小猫发布了新的文献求助10
1分钟前
1分钟前
bare发布了新的文献求助10
1分钟前
田様应助暴走农民采纳,获得10
1分钟前
安琪完成签到,获得积分10
2分钟前
Hanif5329完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Luron完成签到,获得积分10
2分钟前
2分钟前
暴走农民完成签到,获得积分10
2分钟前
暴走农民发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988