Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach

选择性激光熔化 克里金 材料科学 参数统计 高斯过程 探地雷达 线性回归 超参数 激光功率缩放 水准点(测量) 高斯分布 机器学习 计算机科学 人工智能 激光器 复合材料 数学 统计 光学 地理 雷达 物理 微观结构 电信 量子力学 大地测量学
作者
Varad Maitra,Jing Shi,Cuiyuan Lu
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:78: 183-201 被引量:27
标识
DOI:10.1016/j.jmapro.2022.04.020
摘要

It is well known that slight changes in selective laser melting (SLM) process parameters may alter the outcome of mechanical and physical properties of the as-built material in a drastic and haphazard fashion. To overcome this, reliable property prediction models are most pertinent. In this study, a machine learning approach based on Gaussian Process Regression (GPR) is proposed to predict the relative density of as-built Ti-6Al-4V alloy manufactured via SLM, based on the most common input process parameters such as laser power, scanning speed, hatch spacing, and layer thickness, as well as an integrated input of volumetric energy density. A most comprehensive test dataset to train and verify GPR models was retrieved from literature papers that extensively investigated mechanical and physical properties of additively manufactured Ti-6Al-4V alloy. GPR models with four different kernel functions were analyzed and exponential GPR model with optimized hyperparameters was chosen as the most viable model for predicting as-built density of Ti-6Al-4V alloy. A parametric multiple linear regression (MLR) model was also presented and serves as a benchmark. When inferences were made on newer publication data, the GPR model and the MLR model predicted the densities with mean absolute errors (MAE) of 1.12% and 5.22% respectively. The inferior performance of the MLR model compared emphasizes the need of non-parametric supervised learning technique for SLM. To truly demonstrate the effectiveness of the proposed GPR model in real-world metal AM jobs, 22 experimental samples were printed. Predictions made on all the samples, when compared to their actual density values, resulted in MAE of 0.27%. Clearly, creation of most comprehensive mined data, kernel selection, and rigorous validation and verification of GPR model make this study one of its kind and prove the GPR model's predictive dexterity and the potential impact in the world of additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
orixero应助亢kxh采纳,获得10
2秒前
Owen应助健忘雁荷采纳,获得10
5秒前
Annabelame发布了新的文献求助10
6秒前
情怀应助小羊睡饱了采纳,获得10
6秒前
商陆完成签到,获得积分20
7秒前
7秒前
7秒前
NgiNgu完成签到 ,获得积分10
8秒前
everglow发布了新的文献求助10
8秒前
10秒前
10秒前
12秒前
司马三问完成签到,获得积分20
12秒前
quietlife发布了新的文献求助10
13秒前
wonderful发布了新的文献求助10
13秒前
15秒前
16秒前
上官若男应助周小鱼采纳,获得10
16秒前
17秒前
健忘雁荷发布了新的文献求助10
17秒前
18秒前
满眼星辰发布了新的文献求助10
18秒前
笨笨的完成签到 ,获得积分10
21秒前
22秒前
安详芝麻发布了新的文献求助10
25秒前
袁庚完成签到 ,获得积分10
26秒前
27秒前
Billy应助科研通管家采纳,获得10
27秒前
Alex应助科研通管家采纳,获得20
27秒前
quietlife完成签到,获得积分10
27秒前
丘比特应助科研通管家采纳,获得20
27秒前
花成花发布了新的文献求助10
28秒前
和谐的寄凡完成签到,获得积分10
29秒前
新念发布了新的文献求助20
30秒前
琳琳完成签到,获得积分10
30秒前
31秒前
32秒前
qazx完成签到 ,获得积分10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307