Determine independent gut microbiota-diseases association by eliminating the effects of human lifestyle factors

肠道菌群 生物 疾病 肠易激综合征 一致性 人口 炎症性肠病 免疫学 生物信息学 医学 环境卫生 内科学
作者
Congmin Zhu,Xin Wang,Jianchu Li,Rui Jiang,Hui Chen,Ting Chen,Yuqing Yang
出处
期刊:BMC Microbiology [BioMed Central]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12866-021-02414-9
摘要

Lifestyle and physiological variables on human disease risk have been revealed to be mediated by gut microbiota. Low concordance between case-control studies for detecting disease-associated microbe existed due to limited sample size and population-wide bias in lifestyle and physiological variables. To infer gut microbiota-disease associations accurately, we propose to build machine learning models by including both human variables and gut microbiota. When the model's performance with both gut microbiota and human variables is better than the model with just human variables, the independent gut microbiota -disease associations will be confirmed. By building models on the American Gut Project dataset, we found that gut microbiota showed distinct association strengths with different diseases. Adding gut microbiota into human variables enhanced the classification performance of IBD significantly; independent associations between occurrence information of gut microbiota and irritable bowel syndrome, C. difficile infection, and unhealthy status were found; adding gut microbiota showed no improvement on models' performance for diabetes, small intestinal bacterial overgrowth, lactose intolerance, cardiovascular disease. Our results suggested that although gut microbiota was reported to be associated with many diseases, a considerable proportion of these associations may be very weak. We proposed a list of microbes as biomarkers to classify IBD and unhealthy status. Further functional investigations of these microbes will improve understanding of the molecular mechanism of human diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elytra发布了新的文献求助30
刚刚
kk完成签到 ,获得积分10
刚刚
爱静静应助laohu2采纳,获得30
刚刚
脑洞疼应助laohu2采纳,获得10
刚刚
BruceQ发布了新的文献求助10
刚刚
刚刚
闪闪凝冬完成签到,获得积分10
刚刚
辣椒完成签到,获得积分10
刚刚
谷遇完成签到,获得积分10
1秒前
yan发布了新的文献求助10
1秒前
小树苗完成签到,获得积分10
1秒前
2秒前
2秒前
连忘幽完成签到 ,获得积分10
3秒前
和谐的万宝路完成签到,获得积分10
3秒前
方方发布了新的文献求助10
3秒前
3秒前
文静完成签到 ,获得积分10
3秒前
小小鱼完成签到,获得积分10
4秒前
斯文败类应助bsc采纳,获得10
5秒前
十一完成签到 ,获得积分10
5秒前
nan完成签到,获得积分10
5秒前
天天快乐应助月浅采纳,获得10
6秒前
Cindy完成签到,获得积分10
6秒前
阿辽发布了新的文献求助10
6秒前
科研通AI2S应助天天向上采纳,获得10
7秒前
研友_Lpawrn完成签到,获得积分10
7秒前
chenchen完成签到,获得积分20
7秒前
Kiosta应助小费采纳,获得30
7秒前
烊烊坨完成签到,获得积分10
7秒前
科研通AI2S应助吖吖采纳,获得10
8秒前
1234354346完成签到,获得积分10
8秒前
8秒前
小刘完成签到,获得积分10
9秒前
lulu完成签到,获得积分10
9秒前
sobergod完成签到,获得积分10
9秒前
dyce完成签到,获得积分10
10秒前
12秒前
Shilly完成签到,获得积分10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785143
求助须知:如何正确求助?哪些是违规求助? 3330552
关于积分的说明 10247087
捐赠科研通 3045973
什么是DOI,文献DOI怎么找? 1671801
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759691