A review of the Kondo insulator materials class of strongly correlated electron systems: Selected systems and anomalous behavior

近藤绝缘体 近藤效应 凝聚态物理 电子 泡利不相容原理 物理 安德森杂质模型 顺磁性 强相关材料 准粒子 基态 超导电性 原子物理学 量子力学
作者
A. M. Strydom
出处
期刊:Frontiers in Physics [Frontiers Media]
卷期号:11 被引量:3
标识
DOI:10.3389/fphy.2023.1170146
摘要

Studies of strongly correlated electron systems have been at the forefront of research in condensed matter physics ever since the discovery of the co-existence of strong Pauli-paramagnetism and superconductivity in the archetypal heavy-fermion compound CeCu 2 Si 2 in 1979. The construct of correlated electron physics typifies the behavior of thermal and electronic properties of a material when the Coulomb interaction between conduction electrons exceeds the electron kinetic energy at a given thermal energy and redefines in remarkable ways our understanding of the behavior of a metal near its ground state. While correlated electron behavior has by now been demonstrated in a variety of different types of materials, Kondo systems in particular are arguably the most intensively studied among these. The Kondo interaction is used to describe the effect that a spin-magnetic ion has on its environment when immersed in the conduction electron sea of a metal. The localized spin of the Kondo ion polarizes nearby conduction electrons to form a so-called Kondo cloud, which acts to screen and magnetically (partially) neutralize the localized spin. In Kondo systems, the low-temperature behavior is prone to the formation of heavy fermions, which is the term given to quasiparticle excitations that define the emergence of effective electron masses that can be up to three orders of magnitude greater than that of a free electron. The Kondo effect presents itself in three guises: first, the single-ion Kondo state which is found in a metal having only a small amount of magnetic ions dissolved into it; second, the incoherent Kondo state in materials where there is a Kondo ion in every crystallographic unit cell of the material, but the Kondo ions remain incoherent or uncoupled from each other; and third, the coherent Kondo lattice state which manifests itself toward low temperatures where the interaction between Kondo ions becomes comparable to the thermal energy of conduction electrons that mediate magnetic exchange between Kondo ions. In a small number of cases, the outcome of a material condensing into the Kondo state turns out to be the peculiar formation of a very narrow energy band gap at the metallic Fermi energy. Such a band gap has significant consequences in practically all of the physical properties of a material that stem from the behavior of conduction electrons in proximity of the Fermi energy. This is most readily seen in electrical resistivity, heat capacity, and magnetic susceptibility. The band gapping gives cause to the term Kondo insulator (also referred to as Kondo semimetal or heavy-fermion semiconductor) that is used to describe this exceptional variety of Kondo systems. The term Kondo insulator is in general use although most Kondo insulators have a small but finite electrical conduction in the low-temperature limit where Kondo screening may be accomplished to its full extent. While the Kondo lattice ground state is exemplified by a very high density of electronic states at the Fermi energy, Kondo insulators, on the other hand, have, by virtue of narrow band gapping, a low density of electronic states. It remains a counter-intuitive observation, therefore, that despite their low density of states, Kondo insulators have curiously strong spin polarization energy scales and accompanying high values of their Kondo temperature, being the defining quantity which acts as an organizing principle in their temperature-dependent physical properties. In this article, we review the fundamentals of the Kondo insulating state, and we discuss the theoretical principles of what is presently understood about the formation of a Kondo insulator. The experimental results of a selected number of examples that have gained prominence in this class of materials are compared to each other in order to seek out similarities that may help deepen our understanding of the Kondo insulating state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洋洋发布了新的文献求助10
刚刚
bkagyin应助苗条青槐采纳,获得10
刚刚
1秒前
夏日发布了新的文献求助10
1秒前
1秒前
lannie发布了新的文献求助10
2秒前
4秒前
5秒前
杜faifai发布了新的文献求助10
5秒前
ming43发布了新的文献求助10
6秒前
6秒前
李健应助不一采纳,获得20
8秒前
侠客发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
苗条青槐完成签到,获得积分10
10秒前
上官若男应助流浪采纳,获得10
10秒前
深情安青应助怪味豆采纳,获得10
10秒前
无机盐发布了新的文献求助10
10秒前
12秒前
QR发布了新的文献求助10
12秒前
杜faifai完成签到,获得积分10
13秒前
15秒前
KHCHENLE发布了新的文献求助10
15秒前
温暖幻桃完成签到,获得积分10
16秒前
Warming完成签到 ,获得积分10
16秒前
16秒前
亚高山暗针叶林完成签到 ,获得积分10
17秒前
西波磕拉底完成签到,获得积分10
17秒前
丘比特应助keyanmingongyy采纳,获得10
17秒前
18秒前
18秒前
18秒前
温暖幻桃发布了新的文献求助10
19秒前
apocalypse发布了新的文献求助10
19秒前
Accepted完成签到,获得积分0
19秒前
20秒前
不一发布了新的文献求助20
21秒前
Felix发布了新的文献求助10
21秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874472
求助须知:如何正确求助?哪些是违规求助? 3416786
关于积分的说明 10700489
捐赠科研通 3141027
什么是DOI,文献DOI怎么找? 1733115
邀请新用户注册赠送积分活动 835764
科研通“疑难数据库(出版商)”最低求助积分说明 782236