Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks

糖尿病性黄斑水肿 光学相干层析成像 可比性 生成对抗网络 医学 人工智能 眼科 计算机科学 深度学习 糖尿病性视网膜病变 糖尿病 数学 组合数学 内分泌学
作者
Shaopeng Liu,Wanlu Hu,Fabao Xu,Wenjie Chen,Jie Liu,Xuechen Yu,Zhengfei Wang,Zhongwen Li,Zhiwen Li,Xueying Yang,Boxuan Song,Shaopeng Wang,Kai Wang,Xinpeng Wang,Jiaming Hong,Li Zhang,Jianqiao Li
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier BV]
卷期号:41: 103272-103272 被引量:8
标识
DOI:10.1016/j.pdpdt.2023.103272
摘要

This study sought to assess the predictive performance of optical coherence tomography (OCT) images for the response of diabetic macular edema (DME) patients to anti-vascular endothelial growth factor (VEGF) therapy generated from baseline images using generative adversarial networks (GANs).Patient information, including clinical and imaging data, was obtained from inpatients at the Ophthalmology Department of Qilu Hospital. 715 and 103 pairs of pre-and post-treatment OCT images of DME patients were included in the training and validation sets, respectively. The post-treatment OCT images were used to assess the validity of the generated images. Six different GAN models (CycleGAN, PairGAN, Pix2pixHD, RegGAN, SPADE, UNIT) were applied to predict the efficacy of anti-VEGF treatment by generating OCT images. Independent screening and evaluation experiments were conducted to validate the quality and comparability of images generated by different GAN models.OCT images generated f GAN models exhibited high comparability to the real images, especially for edema absorption. RegGAN exhibited the highest prediction accuracy over the CycleGAN, PairGAN, Pix2pixHD, SPADE, and UNIT models. Further analyses were conducted based on the RegGAN. Most post-therapeutic OCT images (95/103) were difficult to differentiate from the real OCT images by retinal specialists. A mean absolute error of 26.74 ± 21.28 μm was observed for central macular thickness (CMT) between the synthetic and real OCT images.Different generative adversarial networks have different prognostic efficacy for DME, and RegGAN yielded the best performance in our study. Different GAN models yielded good accuracy in predicting the OCT-based response to anti-VEGF treatment at one month. Overall, the application of GAN models can assist clinicians in prognosis prediction of patients with DME to design better treatment strategies and follow-up schedules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊延恶完成签到,获得积分10
2秒前
单纯契完成签到 ,获得积分10
2秒前
刻苦如豹关注了科研通微信公众号
3秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
4秒前
Owen应助郜幼枫采纳,获得10
8秒前
科研通AI5应助Summer采纳,获得30
10秒前
Autin应助Abiu采纳,获得20
10秒前
勤恳的断秋完成签到 ,获得积分10
11秒前
科研通AI5应助cugwzr采纳,获得50
12秒前
13秒前
15秒前
yi发布了新的文献求助10
20秒前
cxlhzq发布了新的文献求助10
20秒前
22秒前
bk201完成签到,获得积分10
23秒前
25秒前
26秒前
曹小仙男完成签到 ,获得积分10
27秒前
28秒前
牧瞻完成签到,获得积分10
28秒前
顺利毕业完成签到 ,获得积分10
29秒前
JIANYOUFU发布了新的文献求助30
30秒前
爆米花应助刻苦如豹采纳,获得10
30秒前
青橘短衫发布了新的文献求助10
31秒前
舒适水杯发布了新的文献求助10
33秒前
找寻四氢叶酸完成签到,获得积分10
33秒前
智智完成签到,获得积分10
34秒前
捉一只小鱼完成签到 ,获得积分10
37秒前
cgs完成签到 ,获得积分10
37秒前
Zoe完成签到,获得积分10
37秒前
Isaacwg168完成签到 ,获得积分10
38秒前
刻苦如豹完成签到,获得积分10
40秒前
40秒前
椿iii完成签到 ,获得积分10
41秒前
烟花应助刘燕采纳,获得10
42秒前
温暖囧完成签到 ,获得积分10
42秒前
djc完成签到,获得积分10
43秒前
44秒前
ctwcrew发布了新的文献求助10
48秒前
青橘短衫完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522