A novel prediction model for wind power based on improved long short-term memory neural network

风力发电 人工神经网络 计算机科学 超参数 功率(物理) 期限(时间) 非线性系统 算法 混乱的 风速 高斯分布 电力系统 循环神经网络 人工智能 气象学 工程类 物理 电气工程 量子力学
作者
Jianing Wang,Hongqiu Zhu,Yingjie Zhang,Fei Cheng,Can Zhou
出处
期刊:Energy [Elsevier]
卷期号:265: 126283-126283 被引量:77
标识
DOI:10.1016/j.energy.2022.126283
摘要

Wind power generation technology has attracted worldwide attention. However, its inherent nonlinearity and uncertainty make itself hard to be accurately predicted. As a result, exploring the ways to remedy these defects become the key to the stable operation of power grid. This paper proposed a wind power prediction model based on the improved Long Short-Term Memory (LSTM) network to fit the nonlinearity between data variables and wind power. The chaotic sequence and Gaussian mutation strategy are introduced into the original sparrow algorithm, so as to improve its stability and search performance. Then, the modified sparrow algorithm is implemented to adjust the LSTM network's hyperparameters like batch size, cell number and learning rate; and therefore the prediction accuracy is increased. After that, the improved model is applied to the data sets of a wind farm in Hunan province during the four seasons of 2020. And then it is compared with other four combined models. The experimental results show that, the RMSE of the proposed prediction method is reduced respectively by 37.37%, 13.44%, 10.64% and 20.78% in four seasons. It is proved that the proposed method improves the accuracy for wind power prediction and the effectiveness for power dispatching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
英姑应助伶俐的若剑采纳,获得30
1秒前
CHENCHENG发布了新的文献求助10
2秒前
1953完成签到,获得积分10
4秒前
瑾瑜完成签到 ,获得积分10
4秒前
6秒前
8秒前
安详的未来完成签到,获得积分10
8秒前
小唐完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ANKAR完成签到,获得积分10
9秒前
搜集达人应助FGG采纳,获得10
10秒前
凤凰应助Akitten采纳,获得100
11秒前
Shmilykk应助CHENCHENG采纳,获得10
12秒前
爆米花应助CHENCHENG采纳,获得10
12秒前
浮游应助CHENCHENG采纳,获得10
12秒前
李健的小迷弟应助CHENCHENG采纳,获得10
12秒前
Suzuki白完成签到,获得积分10
12秒前
科研通AI6应助猪猪hero采纳,获得30
13秒前
科研通AI6应助呆萌朝雪采纳,获得10
13秒前
希望天下0贩的0应助北克采纳,获得10
14秒前
张斯瑞发布了新的文献求助20
15秒前
GLN完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
20秒前
ding应助彳系禾采纳,获得10
20秒前
小彭完成签到,获得积分10
21秒前
23秒前
Luna发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
安静初露关注了科研通微信公众号
25秒前
星辰大海应助DG采纳,获得10
26秒前
BareBear应助一一采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409470
求助须知:如何正确求助?哪些是违规求助? 4526972
关于积分的说明 14108713
捐赠科研通 4441353
什么是DOI,文献DOI怎么找? 2437456
邀请新用户注册赠送积分活动 1429466
关于科研通互助平台的介绍 1407613