凝聚态物理
超晶格
异质结
范德瓦尔斯力
材料科学
部分位错
堆积
反平行(数学)
位错
Crystal(编程语言)
叠加原理
物理
磁场
量子力学
核磁共振
计算机科学
分子
程序设计语言
出处
期刊:2D materials
[IOP Publishing]
日期:2024-04-05
卷期号:11 (3): 035014-035014
被引量:6
标识
DOI:10.1088/2053-1583/ad3b13
摘要
Abstract Long-period moiré superlattices at the twisted interface of van der Waals heterostructures relax into preferential stacking domains separated by dislocation networks. Here, we develop a mesoscale theory for dislocations in networks formed in twistronic bilayers with parallel (P) and antiparallel (AP) alignment of unit cells across the twisted interface. For P bilayers we find an exact analytical displacement field across partial dislocations and determine analytic dependences of energy per unit length and width on the orientation and microscopic model parameters. For AP bilayers we formulate a semi-analytical approximation for displacement fields across perfect dislocations, establishing parametric dependences for their widths and energies per unit length. In addition, we find regions in the parametric space of crystal thicknesses and Moiré periods for strong and weak relaxation of the Moiré pattern in multilayered twistronic heterostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI