LSTKC: Long Short-Term Knowledge Consolidation for Lifelong Person Re-identification

合并(业务) 期限(时间) 鉴定(生物学) 心理学 业务 生物 会计 植物 量子力学 物理
作者
Kunlun Xu,Xu Zou,Jiahuan Zhou
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (14): 16202-16210 被引量:14
标识
DOI:10.1609/aaai.v38i14.29554
摘要

Lifelong person re-identification (LReID) aims to train a unified model from diverse data sources step by step. The severe domain gaps between different training steps result in catastrophic forgetting in LReID, and existing methods mainly rely on data replay and knowledge distillation techniques to handle this issue. However, the former solution needs to store historical exemplars which inevitably impedes data privacy. The existing knowledge distillation-based models usually retain all the knowledge of the learned old models without any selections, which will inevitably include erroneous and detrimental knowledge that severely impacts the learning performance of the new model. To address these issues, we propose an exemplar-free LReID method named LongShort Term Knowledge Consolidation (LSTKC) that contains a Rectification-based Short-Term Knowledge Transfer module (R-STKT) and an Estimation-based Long-Term Knowledge Consolidation module (E-LTKC). For each learning iteration within one training step, R-STKT aims to filter and rectify the erroneous knowledge contained in the old model and transfer the rectified knowledge to facilitate the short-term learning of the new model. Meanwhile, once one training step is finished, E-LTKC proposes to further consolidate the learned long-term knowledge via adaptively fusing the parameters of models from different steps. Consequently, experimental results show that our LSTKC exceeds the state-of-the-art methods by 6.3%/9.4% and 7.9%/4.5%, 6.4%/8.0% and 9.0%/5.5% average mAP/R@1 on seen and unseen domains under two different training orders of the challenging LReID benchmark respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY完成签到,获得积分10
刚刚
稳重乐双完成签到 ,获得积分10
1秒前
1秒前
Sylvia完成签到,获得积分10
1秒前
心灵美鑫完成签到 ,获得积分10
1秒前
逍遥呱呱完成签到 ,获得积分10
1秒前
xx完成签到,获得积分10
2秒前
2秒前
BroRooney_完成签到,获得积分10
2秒前
冷傲的若枫完成签到,获得积分10
2秒前
涨涨涨张发布了新的文献求助10
2秒前
丑麒完成签到,获得积分10
2秒前
shinian完成签到 ,获得积分10
3秒前
3秒前
3秒前
飞蚁完成签到,获得积分10
3秒前
求学完成签到 ,获得积分10
4秒前
5秒前
婕婕子完成签到,获得积分10
5秒前
苏苏完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
鞋子完成签到,获得积分10
6秒前
水水的橙子完成签到,获得积分10
7秒前
ruochenzu发布了新的文献求助10
7秒前
7秒前
仝富贵完成签到,获得积分10
7秒前
飘逸秋荷完成签到,获得积分10
7秒前
8秒前
搜集达人应助呵呵采纳,获得10
8秒前
烂漫的安阳完成签到,获得积分10
8秒前
8秒前
Silence完成签到,获得积分0
8秒前
Eva发布了新的文献求助10
10秒前
十年完成签到 ,获得积分10
10秒前
10秒前
xiaokai完成签到,获得积分10
10秒前
快乐的幼丝完成签到 ,获得积分10
11秒前
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118645
求助须知:如何正确求助?哪些是违规求助? 4324517
关于积分的说明 13472791
捐赠科研通 4157640
什么是DOI,文献DOI怎么找? 2278510
邀请新用户注册赠送积分活动 1280244
关于科研通互助平台的介绍 1219029