萎缩
视神经
神经节
生物
视网膜
神经科学
病理
医学
解剖
眼科
作者
Chen Ding,Papa S. Ndiaye,Sydney R. Campbell,Michelle Y. Fry,Jincheng Gong,Sophia Wienbar,Whitney S. Gibbs,Philippe Morquette,Luke H. Chao,Michael Tri H.,Thomas L. Schwarz
摘要
Autosomal Dominant Optic Atrophy (ADOA), the most prevalent hereditary optic neuropathy, leads to retinal ganglion cell (RGC) degeneration and vision loss. ADOA is primarily caused by mutations in the OPA1 gene, which encodes a conserved GTPase important for mitochondrial inner membrane dynamics. To date, the disease mechanism remains unclear, and no therapies are available. We generated a mouse model carrying the pathogenic Opa1R290Q/+ allele that recapitulated key features of human ADOA, including mitochondrial defects, age-related RGC loss, optic nerve degeneration, and reduced RGC functions. We identified SARM1, a neurodegeneration switch, as a key driver of RGC degeneration in these mice. Sarm1 knockout nearly completely suppressed all the degeneration phenotypes without reversing mitochondrial fragmentation. Additionally, we showed that a portion of SARM1 localized within the mitochondrial intermembrane space (IMS). These findings indicated that SARM1 was activated downstream of mitochondrial dysfunction in ADOA, highlighting it as a promising therapeutic target.
科研通智能强力驱动
Strongly Powered by AbleSci AI