A Machine Learning Trauma Triage Model for Critical Care Transport

急诊分诊台 生命体征 医学 急诊医学 医疗急救 模式 紧急医疗服务 回顾性队列研究 重症监护医学 外科 社会科学 社会学
作者
Aaron C. Weidman,Salim Malakouti,David D. Salcido,Chase Zikmund,Ravi M. Patel,Leonard Weiss,Michael R. Pinsky,Gilles Clermont,Jonathan Elmer,Ronald K. Poropatich,Joshua B. Brown,Francis X. Guyette
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (6): e259639-e259639 被引量:2
标识
DOI:10.1001/jamanetworkopen.2025.9639
摘要

Importance Under austere prehospital conditions, rapid classification of injured patients for intervention or transport is essential for providing lifesaving care. Discerning which patients need care most urgently further allows for optimal allocation of limited resources. These triage processes are hindered by the limited diagnostic resources and modalities available in the prehospital environment. Objective To develop a triage model for prehospital use in patients with traumatic injury supported by machine learning (ML) analysis of continuous physiological waveform signals and derived patterns of vital signs. Design, Setting, and Participants This retrospective cohort study used data from January 1, 2018, to November 18, 2021, from critically ill patients with trauma transported by a large critical care air transport system serving Pennsylvania and surrounding states. Patients were included if classified as a trauma case by treating prehospital clinicians during a scene run by the transport service. Data were analyzed from May to November of 2024. Exposures Metrics derived from physiological waveform signal and vital sign patterns during the first 15 minutes following initiation of patient care and transport. Main Outcomes and Measures Administration of a lifesaving intervention (LSI) occurring within a 2-minute epoch during patient care. An ensemble ML approach was applied to predict LSI occurrence from physiological features recorded in the 2-minute epoch immediately preceding the LSI epoch. Results A total of 2809 participants were included in the analysis (mean [SD] age, 47.7 [19.5] years; 1981 [70.5%] men). These participants had 15 088 two-minute epochs that yielded physiological data recording, of which 910 (6.0%) included an LSI. Good model performance was observed for predicting overall LSI, with an area under the receiver operating characteristics curve of 0.810 (95% CI, 0.782-0.842); sensitivity, 0.268 (95% CI, 0.193-0.357); positive predictive value, 0.301 (95% CI, 0.228-0.356); positive likelihood ratio, 6.793 (95% CI, 4.887-8.795); specificity, 0.960 (95% CI, 0.947-0.972); negative predictive value, 0.953 (95% CI, 0.943-0.964); and negative likelihood ratio, 0.763 (95% CI, 0.680-0.837). Performance was equivalent or better when predicting several LSI subcategories (eg, airway intervention, blood transfusion, vasopressor medication), when using physiological features captured up to 15 minutes prior to LSI administration, when predicting only the first LSI occurrence for each patient, and across mechanism of injury. Conclusions and Relevance In this cohort study of critically ill patients with trauma in the prehospital setting, an ML-based triage model using physiological features provided accurate predictions of lifesaving intervention delivery to single patients. Modeling approaches could be deployed in the field to help streamline and augment prehospital triage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
1秒前
哎呦哎发布了新的文献求助10
6秒前
小蘑菇应助彩色的芷容采纳,获得10
9秒前
甜蜜水蜜桃完成签到 ,获得积分10
14秒前
席涑完成签到,获得积分10
17秒前
28秒前
优121212发布了新的文献求助10
28秒前
31秒前
跳跃的语柔完成签到 ,获得积分10
33秒前
现代的南风完成签到 ,获得积分10
35秒前
37秒前
语恒完成签到,获得积分10
41秒前
43秒前
罗马没有马完成签到 ,获得积分10
45秒前
小蘑菇应助dq1992采纳,获得10
45秒前
青青完成签到,获得积分10
50秒前
康康完成签到 ,获得积分10
51秒前
瑾怡Zhang完成签到 ,获得积分10
52秒前
56秒前
Hello应助彩色的芷容采纳,获得10
58秒前
dq1992发布了新的文献求助10
1分钟前
杨三多应助淘宝叮咚采纳,获得10
1分钟前
Hello应助彩色的芷容采纳,获得10
1分钟前
优121212完成签到,获得积分20
1分钟前
淘宝叮咚完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
1分钟前
吉吉完成签到,获得积分10
1分钟前
1分钟前
郭德久完成签到 ,获得积分0
1分钟前
mark33442完成签到,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
凡凡完成签到,获得积分10
1分钟前
情怀应助lsy采纳,获得10
1分钟前
康康完成签到 ,获得积分10
2分钟前
上官若男应助彩色的芷容采纳,获得10
2分钟前
一一一多完成签到 ,获得积分10
2分钟前
阿曾完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4795186
求助须知:如何正确求助?哪些是违规求助? 4116245
关于积分的说明 12734067
捐赠科研通 3845483
什么是DOI,文献DOI怎么找? 2119421
邀请新用户注册赠送积分活动 1141523
关于科研通互助平台的介绍 1030755