催化作用
星团(航天器)
Atom(片上系统)
氧还原反应
还原(数学)
氧原子
热的
氧气
化学
材料科学
物理化学
分子
计算机科学
热力学
物理
有机化学
并行计算
数学
几何学
电极
电化学
程序设计语言
作者
Fei‐Xiang Ma,Xiongyi Liang,Zi-Hao Liu,Yidi Chen,Zheng‐Qi Liu,Wei Zhang,Liang Zhen,Xiao Cheng Zeng,Cheng‐Yan Xu
标识
DOI:10.1002/ange.202504935
摘要
Abstract Anchoring a ligand, such as a functional group or a cluster, on the active metal center is an effective strategy for regulating the electronic structure of single‐atom catalysts (SACs). Herein, we present a nitridation‐induced‐clustering strategy to produce not only SAC Fe‐N 4 in N‐doped carbon nanorods, but also Fe 2 N cluster as a ligand anchored on the active Fe site (Fe 2 N nc /Fe 1 ‐N‐C). Unlike the conventional iron atomization process, the reactive nitridation process can generate thermodynamically stable Fe 2 N intermediates by nitriding the initially formed iron oxide, thereby impeding subsequent thermal atomization to fabricate Fe 2 N nc /Fe 1 ‐N‐C catalysts. Compared to the conventional SAC Fe 1 ‐N‐C with Fe‐N 4 active sites, the Fe 2 N nc /Fe 1 ‐N‐C nanorods are more active for oxygen reduction reaction (ORR), yielding a record high half‐wave potential of 0.957 V versus RHE in alkaline condition. The Fe 2 N nc /Fe 1 ‐N‐C nanorods can be utilized as air‐cathode catalysts for Zn‐air batteries with a charge‐discharge gap of only ∼0.658 V and outstanding cyclability up to 1000 h. Theoretical calculations show that the Fe 2 N nc ligands indeed modified the electronic structures of Fe‐N 4 sites, leading to a lower adsorption energy for the ORR intermediate OH* and facilitating the desorption of OH* and thus higher activity for ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI