Deep learning for the prediction of the chemotherapy response of metastatic colorectal cancer: comparing and combining H&E staining histopathology and infrared spectral histopathology

组织病理学 结直肠癌 医学 H&E染色 癌症 养生 化疗 内科学 肿瘤科 基质 病理 放射科 免疫组织化学
作者
Benjamin Brunel,Pierre Prada,Florian Slimano,Camille Boulagnon‐Rombi,Olivier Bouché,Olivier Piot
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:148 (16): 3909-3917 被引量:3
标识
DOI:10.1039/d3an00627a
摘要

Colorectal cancer is a global public health problem with one of the highest death rates. It is the second most deadly type of cancer and the third most frequently diagnosed in the world. The present study focused on metastatic colorectal cancer (mCRC) patients who had been treated with chemotherapy-based regimen for which it remains uncertainty about the efficacy for all eligible patients. This is a major problem, as it is not yet possible to test different therapies in view of the consequences on the health of the patients and the risk of progression. Here, we propose a method to predict the efficacy of an anticancer treatment in an individualized way, using a deep learning model constructed on the retrospective analysis of the primary tumor of several patients. Histological sections from tumors were imaged by standard hematoxylin and eosin (HE) staining and infrared spectroscopy (IR). Images obtained were then processed by a convolutional neural network (CNN) to extract features and correlate them with the subsequent progression-free survival (PFS) of each patient. Separately, HE and IR imaging resulted in a PFS prediction with an error of 6.6 and 6.3 months respectively (28% and 26% of the average PFS). Combining both modalities allowed to decrease the error to 5.0 months (21%). The inflammatory state of the stroma seemed to be one of the main features detected by the CNN. Our pilot study suggests that multimodal imaging analyzed with deep learning methods allow to give an indication of the effectiveness of a treatment when choosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大哥怒据说采纳,获得10
刚刚
wxj完成签到,获得积分20
刚刚
1秒前
3秒前
风吹麦浪发布了新的文献求助10
4秒前
丰富的小甜瓜完成签到,获得积分10
4秒前
桐桐应助大眼瞪小眼采纳,获得10
5秒前
莱比锡大学优秀毕业生完成签到,获得积分20
5秒前
RedBoy完成签到,获得积分10
6秒前
彩色纸飞机完成签到 ,获得积分10
6秒前
Zx_1993应助Snoopy采纳,获得10
7秒前
科研通AI5应助周钰采纳,获得10
7秒前
7秒前
7秒前
加州西梅完成签到,获得积分10
7秒前
Li完成签到,获得积分10
8秒前
8秒前
gaogao完成签到,获得积分10
9秒前
10秒前
sjx1116完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
keyantong发布了新的文献求助10
12秒前
13秒前
浮游应助小卡子采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI5应助留胡子的火采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
15秒前
Tourist应助科研通管家采纳,获得150
15秒前
Akim应助科研通管家采纳,获得10
15秒前
英姑应助吴向宽采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Tourist应助科研通管家采纳,获得150
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343