Exploring the Potential of Long Short-Term Memory Networks for Predicting Net CO2 Exchange Across Various Ecosystems With Multi-Source Data

碳通量 焊剂(冶金) 生态系统 短波辐射 随机森林 期限(时间) 环境科学 计算机科学 大气科学 人工智能 生态学 辐射 物理 化学 生物 有机化学 量子力学
作者
Chengcheng Huang,Wei He,Jinxiu Liu,Ngoc Tu Nguyen,Hua Yang,Yiming Lv,Hui Chen,Mengyao Zhao
出处
期刊:Authorea - Authorea 被引量:2
标识
DOI:10.22541/essoar.170000018.89933793/v1
摘要

Upscaling flux tower measurements based on machine learning (ML) algorithms is an essential approach for large-scale net ecosystem CO2 exchange (NEE) estimation, but existing ML upscaling methods face some challenges, particularly in capturing NEE interannual variations (IAVs) that may relate to lagged effects. With the capacity of characterizing temporal memory effects, the Long Short-Term Memory (LSTM) networks are expected to help solve this problem. Here we explored the potential of LSTM for predicting NEE across various ecosystems using flux tower data over 82 sites in North America. The LSTM model with differentiated plant function types (PFTs) demonstrates the capability to explain 79.19% (R2 = 0.79) of the monthly variations in NEE within the testing set, with RMSE and MAE values of 0.89 and 0.57 g C m-2 d-1 respectively (r = 0.89, p < 0.001). Moreover, the LSTM model performed robustly in predicting cross-site variability, with 67.19% of the sites that can be predicted by both LSTM models with and without distinguished PFTs showing improved predictive ability. Most importantly, the IAV of predicted NEE highly correlated with that in flux observations (r = 0.81, p < 0.001), clearly outperforming that by the random forest model (r = -0.21, p = 0.011). Among all nine PFTs, solar-induced chlorophyll fluorescence, downward shortwave radiation, and leaf area index are the most important variables for explaining NEE variations, collectively accounting for approximately 54.01% in total. This study highlights the great potential of LSTM for improving carbon flux upscaling with multi-source remote sensing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jie发布了新的文献求助10
刚刚
刚刚
LUJU发布了新的文献求助30
1秒前
南城完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
1秒前
曾馨慧发布了新的文献求助10
1秒前
buno发布了新的文献求助10
1秒前
1秒前
领导范儿应助研友_LjDyNZ采纳,获得10
2秒前
JLLLLLLLL发布了新的文献求助10
2秒前
2秒前
乐in林发布了新的文献求助10
3秒前
薏米lilili发布了新的文献求助10
3秒前
852应助zhuzhu采纳,获得10
4秒前
机智小白锋完成签到,获得积分10
4秒前
bkagyin应助郑麻采纳,获得10
4秒前
mao发布了新的文献求助10
4秒前
公孙朝雨完成签到,获得积分10
4秒前
wukong完成签到,获得积分10
4秒前
领导范儿应助傻子与白痴采纳,获得10
5秒前
5秒前
5秒前
天真酒窝发布了新的文献求助10
5秒前
522完成签到,获得积分10
6秒前
H_发布了新的文献求助10
6秒前
lishan发布了新的文献求助10
7秒前
charm完成签到,获得积分10
7秒前
马尔代夫的梦完成签到,获得积分10
7秒前
望空发布了新的文献求助10
7秒前
SciGPT应助费费采纳,获得10
8秒前
小闫闫完成签到,获得积分10
8秒前
8秒前
9秒前
领导范儿应助风中的诗蕊采纳,获得10
9秒前
深情安青应助美丽蕨菜子采纳,获得10
9秒前
9秒前
炫炫炫完成签到,获得积分10
10秒前
蒲公英发布了新的文献求助10
10秒前
Orange应助欣喜灵波采纳,获得10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588071
求助须知:如何正确求助?哪些是违规求助? 4671128
关于积分的说明 14785936
捐赠科研通 4624341
什么是DOI,文献DOI怎么找? 2531566
邀请新用户注册赠送积分活动 1500214
关于科研通互助平台的介绍 1468207