CS-GA-XGBoost-Based Model for a Radio-Frequency Power Amplifier under Different Temperatures

布谷鸟搜索 超参数优化 渡线 支持向量机 计算机科学 遗传算法 人口 算法 收敛速度 超参数 人工智能 趋同(经济学) 机器学习 粒子群优化 电信 经济 频道(广播) 社会学 人口学 经济增长
作者
Jiayi Wang,Shaohua Zhou
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (9): 1673-1673 被引量:15
标识
DOI:10.3390/mi14091673
摘要

Machine learning methods, such as support vector regression (SVR) and gradient boosting, have been introduced into the modeling of power amplifiers and achieved good results. Among various machine learning algorithms, XGBoost has been proven to obtain high-precision models faster with specific parameters. Hyperparameters have a significant impact on the model performance. A traditional grid search for hyperparameters is time-consuming and labor-intensive and may not find the optimal parameters. To solve the problem of parameter searching, improve modeling accuracy, and accelerate modeling speed, this paper proposes a PA modeling method based on CS-GA-XGBoost. The cuckoo search (CS)-genetic algorithm (GA) integrates GA’s crossover operator into CS, making full use of the strong global search ability of CS and the fast rate of convergence of GA so that the improved CS-GA can expand the size of the bird nest population and reduce the scope of the search, with a better optimization ability and faster rate of convergence. This paper validates the effectiveness of the proposed modeling method by using measured input and output data of 2.5-GHz-GaN class-E PA under different temperatures (−40 °C, 25 °C, and 125 °C) as examples. The experimental results show that compared to XGBoost, GA-XGBoost, and CS-XGBoost, the proposed CS-GA-XGBoost can improve the modeling accuracy by one order of magnitude or more and shorten the modeling time by one order of magnitude or more. In addition, compared with classic machine learning algorithms, including gradient boosting, random forest, and SVR, the proposed CS-GA-XGBoost can improve modeling accuracy by three orders of magnitude or more and shorten modeling time by two orders of magnitude, demonstrating the superiority of the algorithm in terms of modeling accuracy and speed. The CS-GA-XGBoost modeling method is expected to be introduced into the modeling of other devices/circuits in the radio-frequency/microwave field and achieve good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小北发布了新的文献求助10
1秒前
wanci应助Azlne采纳,获得10
1秒前
2秒前
可爱的函函应助wzw采纳,获得10
3秒前
俏皮的邴完成签到 ,获得积分10
3秒前
Darcy完成签到,获得积分10
4秒前
点点发布了新的文献求助20
5秒前
6秒前
7秒前
wxaaaa发布了新的文献求助10
8秒前
9秒前
9秒前
醉笙发布了新的文献求助10
10秒前
11秒前
caibi发布了新的文献求助10
11秒前
12秒前
zy完成签到,获得积分10
12秒前
何hh发布了新的文献求助10
13秒前
忐忑的沛白完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
marcelo完成签到,获得积分10
14秒前
短腿小柯基完成签到 ,获得积分10
14秒前
15秒前
张茜完成签到,获得积分10
15秒前
tracy_5114发布了新的文献求助10
15秒前
充电宝应助dd99081采纳,获得10
16秒前
UP关注了科研通微信公众号
17秒前
善学以致用应助煤灰采纳,获得10
17秒前
胖大米发布了新的文献求助10
18秒前
fighting发布了新的文献求助10
18秒前
achen完成签到,获得积分10
19秒前
19秒前
sidegate发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
阿柒发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430727
求助须知:如何正确求助?哪些是违规求助? 4543827
关于积分的说明 14189399
捐赠科研通 4462258
什么是DOI,文献DOI怎么找? 2446490
邀请新用户注册赠送积分活动 1437891
关于科研通互助平台的介绍 1414544