Improved yolov5 algorithm combined with depth camera and embedded system for blind indoor visual assistance

计算机科学 计算机视觉 人工智能 计算机图形学(图像) 算法
作者
Shouxin Zhang,Yanyan Wang,Shengzhe Shi,Qingqing Wang,Chun Wang,Sheng Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74416-2
摘要

To assist the visually impaired in their daily lives and solve the problems associated with poor portability, high hardware costs, and environmental susceptibility of indoor object-finding aids for the visually impaired, an improved YOLOv5 algorithm was proposed. It was combined with a RealSense D435i depth camera and a voice system to realise an indoor object-finding device for the visually impaired using a Raspberry Pi 4 B device as its core. The algorithm uses GhostNet instead of the YOLOv5s backbone network to reduce the number of parameters and computation of the model, incorporates an attention mechanism (coordinate attention), and replaces the YOLOv5 neck network with a bidirectional feature pyramid network to enhance feature extraction. Compared to the YOLOv5 model, the model size was reduced by 42.4%, number of parameters was reduced by 47.9%, and recall rate increased by 1.2% with the same precision. This study applied the improved YOLOv5 algorithm to an indoor object-finding device for the visually impaired, where the searched object was input by voice, and the RealSense D435i was used to acquire RGB and depth images to realize the detection and ranging of the object, broadcast the specific distance of the target object by voice, and assist the visually impaired in finding the object.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wy发布了新的文献求助10
1秒前
1秒前
木头发布了新的文献求助10
1秒前
FashionBoy应助hxscu采纳,获得10
2秒前
LLL发布了新的文献求助10
2秒前
勤奋高丽完成签到,获得积分10
3秒前
3秒前
痴情的安荷完成签到,获得积分20
3秒前
盲盒完成签到,获得积分10
3秒前
渔舟发布了新的文献求助10
3秒前
思源应助jiangqin123采纳,获得10
4秒前
5秒前
yanzi完成签到,获得积分20
6秒前
6秒前
Owen应助pppppp采纳,获得10
6秒前
虾滑完成签到,获得积分10
6秒前
CDreamY完成签到,获得积分10
6秒前
6秒前
6秒前
端庄的如花完成签到,获得积分10
8秒前
共享精神应助传统的孤丝采纳,获得10
8秒前
bkagyin应助传统的孤丝采纳,获得10
8秒前
8秒前
8秒前
9秒前
热心凡雁发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
北栀完成签到,获得积分10
10秒前
10秒前
fdn完成签到,获得积分10
11秒前
11秒前
丘比特应助xopla采纳,获得10
11秒前
S77发布了新的文献求助10
11秒前
勤奋高丽发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
香蕉觅云应助Mansis采纳,获得10
13秒前
6223发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870083
求助须知:如何正确求助?哪些是违规求助? 3412314
关于积分的说明 10678774
捐赠科研通 3136752
什么是DOI,文献DOI怎么找? 1730346
邀请新用户注册赠送积分活动 833963
科研通“疑难数据库(出版商)”最低求助积分说明 781019