Interpretable machine learning models for predicting probabilistic axial buckling strength of steel circular hollow section members considering discreteness of geometries and material

屈曲 结构工程 概率逻辑 章节(排版) 工程类 材料科学 计算机科学 人工智能 操作系统
作者
Zhengyang Hou,Shuling Hu,Wang We
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:28 (5): 828-844 被引量:5
标识
DOI:10.1177/13694332241289175
摘要

Steel circular hollow section (CHS) members are widely utilized as axial force-resisting structural members in civil engineering structures. The buckling strength under axial loads is one of the critical parameters to determine the performance of the steel CHS members, which is significantly affected by the discreteness introduced by geometries, material, and initial imperfections. However, the reduction factor employed in the modern design codes (i.e. Chinese codes and EC3) only accounts for the reduction caused by all kinds of discreteness and does not reflect the impacts of every single discreteness and imperfection. To fill the gap, this paper proposed an interpretable machine-learning method to provide the probabilistic axial buckling strength of steel CHS members prediction result in a distribution form with the consideration of detailed discreteness. The model to predict the nominal axial buckling strength of steel CHS members was first developed utilizing ten machine learning algorithms after sufficient numerical simulations, where the numerical model was verified using test results. The artificial neural network (ANN) was selected for developing the prediction model due to its highly reliable performance in testing. The developed ANN models were further interpreted utilizing Shapley Additive exPlanations (SHAP) to determine the interrelationship of different parameters. Then, the probabilistic axial bucking strength prediction model was established based on the developed ANN models, where the Latin hypercube sampling method was applied to address the discreteness of geometries, material, and initial imperfections. The generated probabilistic axial bucking strength prediction model’s effectiveness was verified by the evidence that the machine learning prediction results can highly match the numerical results' probability density function and the result from codes while significantly reducing the computation time. Finally, the design parameters’ impact on the axial buckling strength’s discreteness was evaluated using the global sensitivity analysis (GSA) method. The result shows that the discreteness of design parameters substantially influences the distribution of the axial buckling strength of the steel CHS members and the proposed prediction model can provide an accurate probabilistic distribution prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Bonaventure采纳,获得30
刚刚
慕青应助开心晓凡采纳,获得10
刚刚
英吉利25发布了新的文献求助10
1秒前
呆萌的莲完成签到,获得积分10
1秒前
我是老大应助久违采纳,获得10
2秒前
钮伟静发布了新的文献求助10
2秒前
努力的学完成签到,获得积分10
2秒前
小爽完成签到,获得积分10
3秒前
iNk应助Wzebrafish采纳,获得10
4秒前
Connie完成签到,获得积分10
5秒前
5秒前
所所应助tianfx3采纳,获得10
7秒前
华仔应助mdmdd采纳,获得10
8秒前
8秒前
春华秋实发布了新的文献求助10
8秒前
8秒前
9秒前
savior完成签到,获得积分10
9秒前
Yh完成签到,获得积分10
9秒前
马梓玥完成签到,获得积分20
10秒前
JamesPei应助廖喜林采纳,获得10
10秒前
10秒前
LAN完成签到,获得积分10
10秒前
艾伊发布了新的文献求助10
10秒前
无极微光应助宋宋采纳,获得20
12秒前
下次一定完成签到,获得积分10
12秒前
NexusExplorer应助savior采纳,获得10
13秒前
彭于晏应助WuCola采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
不二发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
cw发布了新的文献求助10
13秒前
13秒前
圆锥香蕉举报sci大户求助涉嫌违规
14秒前
14秒前
璃月品茶钟离完成签到,获得积分10
14秒前
长情立诚完成签到,获得积分10
14秒前
hyy发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5782437
求助须知:如何正确求助?哪些是违规求助? 5671355
关于积分的说明 15458235
捐赠科研通 4912447
什么是DOI,文献DOI怎么找? 2644085
邀请新用户注册赠送积分活动 1591789
关于科研通互助平台的介绍 1546482