Joint image enhancement learning for marine object detection in natural scene

计算机科学 子网 目标检测 人工智能 计算机视觉 对象(语法) 特征(语言学) 能见度 骨干网 水下 模式识别(心理学) 物理 哲学 地质学 光学 海洋学 语言学 计算机网络
作者
Na Cheng,Hongye Xie,Xuanbing Zhu,Hongyu Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105905-105905 被引量:11
标识
DOI:10.1016/j.engappai.2023.105905
摘要

Marine object detection has received an increasing amount of attention due to its enormous application potential in the field of marine engineering, Remotely Operated Vehicles, and Autonomous Underwater Vehicles. It has made substantial progress in generic object detection with the prevalent trend of deep learning in the past few years. However, marine object detection in natural scenes remains certainly an unsolved problem. The challenges stem from low visibility, small size, serious occlusion, and dense distribution. In this article, we attempt to address the marine object detection problem by presenting a clever joint attention-guided dual-subnet network that can jointly learn both image enhancement and object detection tasks for end-to-end training. JADSNet attains significant performance gains by comprising two subnetworks: an image enhancement subnet and a marine object detection subnet. Essentially, the marine object detection subnet is an extended feature pyramid network with a dual attention-guided module and a multi-term loss function. It takes RetinaNet as a backbone and is responsible for classifying and locating objects. In the image enhancement subnet, feature extraction layers are shared with the marine object detection subnet and a feature enhancement module is used. A multi-term loss function is introduced to reduce false detection and miss detection caused by the mutual occlusion of marine objects. We build a new Marine Object Detection (MOD) dataset that contains more than 25,000 train-val and 3000 test underwater images. The experimental findings demonstrate that our JADSNet realize notable performance and reach 74.41% mAP on the MOD dataset. We also verify that the JADSNet method can be applied to object detection in foggy weather and achieve 49.54% mAP on the foggy dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
troyty完成签到,获得积分10
1秒前
目眩发布了新的文献求助10
1秒前
7秒前
开放世界完成签到,获得积分10
8秒前
冯杰完成签到,获得积分10
8秒前
研友_Y59785举报呆萌香菇求助涉嫌违规
8秒前
chestnut灬完成签到 ,获得积分10
10秒前
hhhhhh完成签到,获得积分20
10秒前
jojo完成签到 ,获得积分10
10秒前
RichieXU完成签到,获得积分10
11秒前
glowworm完成签到 ,获得积分10
12秒前
儒雅的雁山完成签到 ,获得积分10
13秒前
minjeong完成签到,获得积分10
13秒前
Hulen完成签到 ,获得积分10
13秒前
Mollymama完成签到 ,获得积分10
14秒前
背理完成签到,获得积分10
14秒前
CC完成签到 ,获得积分10
16秒前
可耐的思远完成签到 ,获得积分10
16秒前
A吞发布了新的文献求助10
17秒前
纯真的诗兰完成签到,获得积分10
23秒前
情怀应助关天木采纳,获得10
24秒前
ttx完成签到 ,获得积分20
25秒前
Jasper应助舒心夏云采纳,获得30
28秒前
yyds完成签到,获得积分10
29秒前
ttx关注了科研通微信公众号
30秒前
30秒前
30秒前
HZY完成签到,获得积分10
31秒前
关天木发布了新的文献求助10
35秒前
36秒前
38秒前
40秒前
三三完成签到,获得积分10
41秒前
Wangran完成签到 ,获得积分10
41秒前
pluto应助科研通管家采纳,获得20
41秒前
daqisong完成签到,获得积分10
42秒前
Sunyujie完成签到,获得积分10
43秒前
动漫大师发布了新的文献求助10
44秒前
Xiaoxiao应助关天木采纳,获得30
44秒前
大闪电发布了新的文献求助30
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522