Suicidality Prediction in Youth Crisis Text Line Users: Development and Validation of an Explainable Artificial Intelligence Text Classifier (Preprint)

预印本 人工智能 计算机科学 分类器(UML) 计算机安全 万维网
作者
Julia Thomas,Antonia Lucht,Jacob Segler,Richard Wundrack,Marcel Miché,Roselind Lieb,Lars Kuchinke,Gunther Meinlschmidt
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:11: e63809-e63809
标识
DOI:10.2196/63809
摘要

Background Suicide represents a critical public health concern, and machine learning (ML) models offer the potential for identifying at-risk individuals. Recent studies using benchmark datasets and real-world social media data have demonstrated the capability of pretrained large language models in predicting suicidal ideation and behaviors (SIB) in speech and text. Objective This study aimed to (1) develop and implement ML methods for predicting SIBs in a real-world crisis helpline dataset, using transformer-based pretrained models as a foundation; (2) evaluate, cross-validate, and benchmark the model against traditional text classification approaches; and (3) train an explainable model to highlight relevant risk-associated features. Methods We analyzed chat protocols from adolescents and young adults (aged 14-25 years) seeking assistance from a German crisis helpline. An ML model was developed using a transformer-based language model architecture with pretrained weights and long short-term memory layers. The model predicted suicidal ideation (SI) and advanced suicidal engagement (ASE), as indicated by composite Columbia-Suicide Severity Rating Scale scores. We compared model performance against a classical word-vector-based ML model. We subsequently computed discrimination, calibration, clinical utility, and explainability information using a Shapley Additive Explanations value-based post hoc estimation model. Results The dataset comprised 1348 help-seeking encounters (1011 for training and 337 for testing). The transformer-based classifier achieved a macroaveraged area under the curve (AUC) receiver operating characteristic (ROC) of 0.89 (95% CI 0.81-0.91) and an overall accuracy of 0.79 (95% CI 0.73-0.99). This performance surpassed the word-vector-based baseline model (AUC-ROC=0.77, 95% CI 0.64-0.90; accuracy=0.61, 95% CI 0.61-0.80). The transformer model demonstrated excellent prediction for nonsuicidal sessions (AUC-ROC=0.96, 95% CI 0.96-0.99) and good prediction for SI and ASE, with AUC-ROCs of 0.85 (95% CI 0.97-0.86) and 0.87 (95% CI 0.81-0.88), respectively. The Brier Skill Score indicated a 44% improvement in classification performance over the baseline model. The Shapley Additive Explanations model identified language features predictive of SIBs, including self-reference, negation, expressions of low self-esteem, and absolutist language. Conclusions Neural networks using large language model–based transfer learning can accurately identify SI and ASE. The post hoc explainer model revealed language features associated with SI and ASE. Such models may potentially support clinical decision-making in suicide prevention services. Future research should explore multimodal input features and temporal aspects of suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
HHHHHH完成签到 ,获得积分10
1秒前
甲乙完成签到,获得积分10
1秒前
CC发布了新的文献求助10
1秒前
1秒前
自由的笑容完成签到,获得积分10
1秒前
可以发布了新的文献求助10
2秒前
hahajiang完成签到,获得积分10
3秒前
3秒前
3秒前
赘婿应助沸腾鱼采纳,获得10
3秒前
3秒前
一袋薯片发布了新的文献求助10
3秒前
Ck完成签到,获得积分10
3秒前
今天做实验了吗完成签到 ,获得积分10
3秒前
shriff发布了新的文献求助10
4秒前
宋宋发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助valiant采纳,获得10
4秒前
华仔应助阳光的安波采纳,获得10
5秒前
小晖晖完成签到,获得积分10
5秒前
阿怪12333完成签到,获得积分10
5秒前
物欲横流完成签到,获得积分10
6秒前
6秒前
wangs完成签到,获得积分10
6秒前
哇哦发布了新的文献求助10
7秒前
7秒前
8秒前
xzyin完成签到,获得积分10
8秒前
summer发布了新的文献求助10
8秒前
挽月白完成签到,获得积分10
8秒前
爆米花应助酷酷学采纳,获得10
8秒前
乐鱼完成签到,获得积分10
8秒前
哈哈哈完成签到,获得积分10
9秒前
charles发布了新的文献求助20
9秒前
Rondab应助hahajiang采纳,获得30
9秒前
9秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582