Automating the optimization of proton PBS treatment planning for head and neck cancers using policy gradient‐based deep reinforcement learning

强化学习 放射治疗计划 质子疗法 头颈部 头颈部癌 医学物理学 人工智能 计算机科学 医学 放射治疗 放射科 外科
作者
Qingqing Wang,Chang Chang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17654
摘要

Proton pencil beam scanning (PBS) treatment planning for head and neck (H&N) cancers is a time-consuming and experience-demanding task where a large number of potentially conflicting planning objectives are involved. Deep reinforcement learning (DRL) has recently been introduced to the planning processes of intensity-modulated radiation therapy (IMRT) and brachytherapy for prostate, lung, and cervical cancers. However, existing DRL planning models are built upon the Q-learning framework and rely on weighted linear combinations of clinical metrics for reward calculation. These approaches suffer from poor scalability and flexibility, that is, they are only capable of adjusting a limited number of planning objectives in discrete action spaces and therefore fail to generalize to more complex planning problems. Here we propose an automatic treatment planning model using the proximal policy optimization (PPO) algorithm in the policy gradient framework of DRL and a dose distribution-based reward function for proton PBS treatment planning of H&N cancers. The planning process is formulated as an optimization problem. A set of empirical rules is used to create auxiliary planning structures from target volumes and organs-at-risk (OARs), along with their associated planning objectives. Special attention is given to overlapping structures with potentially conflicting objectives. These planning objectives are fed into an in-house optimization engine to generate the spot monitor unit (MU) values. A decision-making policy network trained using PPO is developed to iteratively adjust the involved planning objective parameters. The policy network predicts actions in a continuous action space and guides the treatment planning system to refine the PBS treatment plans using a novel dose distribution-based reward function. A total of 34 H&N patients (30 for training and 4 for test) and 26 liver patients (20 for training, 6 for test) are included in this study to train and verify the effectiveness and generalizability of the proposed method. Proton H&N treatment plans generated by the model show improved OAR sparing with equal or superior target coverage when compared with human-generated plans. Moreover, additional experiments on liver cancer demonstrate that the proposed method can be successfully generalized to other treatment sites. The automatic treatment planning model can generate complex H&N plans with quality comparable or superior to those produced by experienced human planners. Compared with existing works, our method is capable of handling more planning objectives in continuous action spaces. To the best of our knowledge, this is the first DRL-based automatic treatment planning model capable of achieving human-level performance for H&N cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖树叶完成签到,获得积分10
1秒前
ccc发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
sekiro发布了新的文献求助10
5秒前
5秒前
青杉杉完成签到,获得积分10
6秒前
属实有点拉胯给属实有点拉胯的求助进行了留言
6秒前
7秒前
8秒前
8秒前
ll发布了新的文献求助10
8秒前
xx发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
柴火妞完成签到,获得积分10
10秒前
tom完成签到,获得积分10
10秒前
哈哈发布了新的文献求助10
10秒前
nbnbaaa发布了新的文献求助10
10秒前
leadsyew发布了新的文献求助10
11秒前
烟花应助无私航空采纳,获得10
11秒前
Jiang发布了新的文献求助10
12秒前
12秒前
13秒前
田様应助谢嘻嘻嘻嘻采纳,获得10
14秒前
香蕉招牌完成签到,获得积分10
14秒前
tom发布了新的文献求助10
14秒前
15秒前
totoro完成签到,获得积分10
16秒前
小四喜发布了新的文献求助10
16秒前
Orange应助Jiang采纳,获得10
18秒前
19秒前
Prillision完成签到,获得积分10
21秒前
大模型应助Alex采纳,获得30
21秒前
搜集达人应助翁怜晴采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565114
求助须知:如何正确求助?哪些是违规求助? 3988969
关于积分的说明 12351379
捐赠科研通 3660242
什么是DOI,文献DOI怎么找? 2017066
邀请新用户注册赠送积分活动 1051419
科研通“疑难数据库(出版商)”最低求助积分说明 939177