亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automating the optimization of proton PBS treatment planning for head and neck cancers using policy gradient‐based deep reinforcement learning

强化学习 放射治疗计划 质子疗法 头颈部 头颈部癌 医学物理学 人工智能 计算机科学 医学 放射治疗 放射科 外科
作者
Qingqing Wang,Chang Chang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17654
摘要

Proton pencil beam scanning (PBS) treatment planning for head and neck (H&N) cancers is a time-consuming and experience-demanding task where a large number of potentially conflicting planning objectives are involved. Deep reinforcement learning (DRL) has recently been introduced to the planning processes of intensity-modulated radiation therapy (IMRT) and brachytherapy for prostate, lung, and cervical cancers. However, existing DRL planning models are built upon the Q-learning framework and rely on weighted linear combinations of clinical metrics for reward calculation. These approaches suffer from poor scalability and flexibility, that is, they are only capable of adjusting a limited number of planning objectives in discrete action spaces and therefore fail to generalize to more complex planning problems. Here we propose an automatic treatment planning model using the proximal policy optimization (PPO) algorithm in the policy gradient framework of DRL and a dose distribution-based reward function for proton PBS treatment planning of H&N cancers. The planning process is formulated as an optimization problem. A set of empirical rules is used to create auxiliary planning structures from target volumes and organs-at-risk (OARs), along with their associated planning objectives. Special attention is given to overlapping structures with potentially conflicting objectives. These planning objectives are fed into an in-house optimization engine to generate the spot monitor unit (MU) values. A decision-making policy network trained using PPO is developed to iteratively adjust the involved planning objective parameters. The policy network predicts actions in a continuous action space and guides the treatment planning system to refine the PBS treatment plans using a novel dose distribution-based reward function. A total of 34 H&N patients (30 for training and 4 for test) and 26 liver patients (20 for training, 6 for test) are included in this study to train and verify the effectiveness and generalizability of the proposed method. Proton H&N treatment plans generated by the model show improved OAR sparing with equal or superior target coverage when compared with human-generated plans. Moreover, additional experiments on liver cancer demonstrate that the proposed method can be successfully generalized to other treatment sites. The automatic treatment planning model can generate complex H&N plans with quality comparable or superior to those produced by experienced human planners. Compared with existing works, our method is capable of handling more planning objectives in continuous action spaces. To the best of our knowledge, this is the first DRL-based automatic treatment planning model capable of achieving human-level performance for H&N cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
在水一方应助Leemyaaa采纳,获得10
8秒前
二三发布了新的文献求助10
18秒前
punch发布了新的文献求助10
27秒前
punch完成签到,获得积分10
33秒前
34秒前
35秒前
科研剧中人完成签到,获得积分10
37秒前
oscar完成签到,获得积分10
42秒前
CodeCraft应助科研通管家采纳,获得10
45秒前
ZanE完成签到,获得积分10
46秒前
1分钟前
曹健生完成签到,获得积分20
1分钟前
周周完成签到,获得积分10
1分钟前
天凉王破完成签到 ,获得积分10
1分钟前
科研通AI6应助GL采纳,获得10
1分钟前
曹健生发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助lucky采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
二三完成签到,获得积分10
2分钟前
2分钟前
2分钟前
美满尔蓝完成签到,获得积分10
3分钟前
youyu发布了新的文献求助10
3分钟前
3分钟前
Ollm发布了新的文献求助30
3分钟前
科研通AI6应助youyu采纳,获得10
3分钟前
3分钟前
3分钟前
多喝岩浆发布了新的文献求助10
3分钟前
3分钟前
多喝岩浆完成签到,获得积分10
3分钟前
科研通AI6应助多喝岩浆采纳,获得10
4分钟前
4分钟前
程晓研完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488509
求助须知:如何正确求助?哪些是违规求助? 4587361
关于积分的说明 14413718
捐赠科研通 4518703
什么是DOI,文献DOI怎么找? 2475982
邀请新用户注册赠送积分活动 1461505
关于科研通互助平台的介绍 1434409