Automating the optimization of proton PBS treatment planning for head and neck cancers using policy gradient‐based deep reinforcement learning

强化学习 放射治疗计划 质子疗法 头颈部 头颈部癌 医学物理学 人工智能 计算机科学 医学 放射治疗 放射科 外科
作者
Qingqing Wang,Chang Chang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17654
摘要

Proton pencil beam scanning (PBS) treatment planning for head and neck (H&N) cancers is a time-consuming and experience-demanding task where a large number of potentially conflicting planning objectives are involved. Deep reinforcement learning (DRL) has recently been introduced to the planning processes of intensity-modulated radiation therapy (IMRT) and brachytherapy for prostate, lung, and cervical cancers. However, existing DRL planning models are built upon the Q-learning framework and rely on weighted linear combinations of clinical metrics for reward calculation. These approaches suffer from poor scalability and flexibility, that is, they are only capable of adjusting a limited number of planning objectives in discrete action spaces and therefore fail to generalize to more complex planning problems. Here we propose an automatic treatment planning model using the proximal policy optimization (PPO) algorithm in the policy gradient framework of DRL and a dose distribution-based reward function for proton PBS treatment planning of H&N cancers. The planning process is formulated as an optimization problem. A set of empirical rules is used to create auxiliary planning structures from target volumes and organs-at-risk (OARs), along with their associated planning objectives. Special attention is given to overlapping structures with potentially conflicting objectives. These planning objectives are fed into an in-house optimization engine to generate the spot monitor unit (MU) values. A decision-making policy network trained using PPO is developed to iteratively adjust the involved planning objective parameters. The policy network predicts actions in a continuous action space and guides the treatment planning system to refine the PBS treatment plans using a novel dose distribution-based reward function. A total of 34 H&N patients (30 for training and 4 for test) and 26 liver patients (20 for training, 6 for test) are included in this study to train and verify the effectiveness and generalizability of the proposed method. Proton H&N treatment plans generated by the model show improved OAR sparing with equal or superior target coverage when compared with human-generated plans. Moreover, additional experiments on liver cancer demonstrate that the proposed method can be successfully generalized to other treatment sites. The automatic treatment planning model can generate complex H&N plans with quality comparable or superior to those produced by experienced human planners. Compared with existing works, our method is capable of handling more planning objectives in continuous action spaces. To the best of our knowledge, this is the first DRL-based automatic treatment planning model capable of achieving human-level performance for H&N cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
INNE完成签到,获得积分10
2秒前
张鑫怡完成签到,获得积分10
2秒前
zhu发布了新的文献求助10
3秒前
开心完成签到,获得积分10
6秒前
xinanan完成签到,获得积分10
6秒前
大模型应助Monster采纳,获得10
7秒前
牛马完成签到,获得积分10
7秒前
苏苏完成签到,获得积分10
8秒前
善学以致用应助hui采纳,获得10
10秒前
10秒前
10秒前
斯文安荷发布了新的文献求助10
11秒前
arsenal完成签到 ,获得积分10
12秒前
李健应助务实蛋挞采纳,获得10
12秒前
忐忑的书桃完成签到 ,获得积分10
12秒前
Akim应助李博士采纳,获得10
13秒前
豆豆发布了新的文献求助10
14秒前
15秒前
ALDXL发布了新的文献求助10
15秒前
16秒前
zhu完成签到,获得积分20
18秒前
方又晴完成签到,获得积分10
19秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
20秒前
20秒前
WYY发布了新的文献求助10
21秒前
21秒前
24秒前
小米发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
27秒前
眯眯眼的海完成签到,获得积分10
27秒前
小坤同学完成签到,获得积分0
28秒前
Zhusy发布了新的文献求助10
29秒前
赘婿应助斯文安荷采纳,获得10
30秒前
慕青应助周周采纳,获得10
31秒前
31秒前
QLLW完成签到,获得积分10
31秒前
34秒前
饱饱完成签到 ,获得积分10
36秒前
儒雅的裘完成签到,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495332
求助须知:如何正确求助?哪些是违规求助? 4593052
关于积分的说明 14439491
捐赠科研通 4525869
什么是DOI,文献DOI怎么找? 2479761
邀请新用户注册赠送积分活动 1464560
关于科研通互助平台的介绍 1437404