已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DF2RQ: Dynamic Feature Fusion via Region-Wise Queries for Semantic Segmentation of Multimodal Remote Sensing Data

计算机科学 模式 特征(语言学) 人工智能 模态(人机交互) 模式识别(心理学) 传感器融合 判别式 融合 语义学(计算机科学) 分割 语言学 哲学 社会科学 社会学 程序设计语言
作者
Shiyang Feng,Zhaowei Li,Bo Zhang,Bin Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2025.3526247
摘要

Although remote sensing (RS) data with multiple modalities can be used to significantly improve the accuracy of semantic segmentation in RS data, how to effectively extract multimodal information through multimodal feature fusion remains a challenging task. Specifically, existing methods for multimodal feature fusion still face two major challenges: 1) Due to the diverse imaging mechanisms of multimodal RS data, the boundaries of the same foreground may vary across different modalities, leading to the inclusion of unwanted background semantics in the fused foreground features; 2) RS data from different modalities exhibit varying discriminative abilities for different foregrounds, making it challenging to determine the proportion of semantic information for each modality in the fusion results. To address the above issues, we propose a dynamic feature fusion method based on region-wise queries, namely DF 2 RQ, for SS of multimodal RS data. This method is primarily composed of two components: the spatial reconstruction (SR) module and the dynamic fusion (DF) module. Within the SR module, we propose a spatial reconstruction scheme that samples foreground features from different modalities, achieving independent reconstruction of different unimodal features, thereby alleviating the semantic mixing between foreground and background across modalities. In the DF module, a feature fusion scheme based on unimodal feature reference positions is proposed to obtain fusion weights for each modality, thereby enabling the dynamic fusion of complementary features from multiple modalities. The performance of the proposed method has been extensively evaluated on various multimodal RS datasets for SS, and the experimental results consistently show that the proposed method achieves state-of-the-art accuracy on multiple commonly used metrics. In addition, our code is available at https://github.com/I3ab/DF2RQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古今奇观完成签到 ,获得积分10
3秒前
yao发布了新的文献求助10
4秒前
烂漫的皮带完成签到 ,获得积分10
7秒前
Jasper应助xchqb采纳,获得10
7秒前
7秒前
便M完成签到,获得积分20
10秒前
刘海清发布了新的文献求助10
11秒前
万能图书馆应助聪明梦松采纳,获得10
13秒前
卧镁铀钳完成签到 ,获得积分10
14秒前
白晓涵完成签到 ,获得积分10
16秒前
17秒前
xchqb发布了新的文献求助10
23秒前
25秒前
30秒前
沈茜发布了新的文献求助10
30秒前
shuhaha完成签到,获得积分10
32秒前
33秒前
hodi完成签到,获得积分10
34秒前
Heyley完成签到,获得积分10
35秒前
聪明梦松发布了新的文献求助10
35秒前
37秒前
小蘑菇应助miyya采纳,获得10
38秒前
呆二龙完成签到 ,获得积分10
40秒前
40秒前
Otter完成签到,获得积分0
41秒前
41秒前
和谐诗双完成签到 ,获得积分10
43秒前
LY完成签到,获得积分10
43秒前
duan完成签到 ,获得积分10
48秒前
大鼻子的新四岁完成签到,获得积分10
51秒前
52秒前
今后应助LY采纳,获得10
53秒前
yohana完成签到 ,获得积分10
54秒前
胡萝卜完成签到,获得积分10
59秒前
1分钟前
rengar完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356315
求助须知:如何正确求助?哪些是违规求助? 4488125
关于积分的说明 13971650
捐赠科研通 4388976
什么是DOI,文献DOI怎么找? 2411319
邀请新用户注册赠送积分活动 1403874
关于科研通互助平台的介绍 1377700