油藏计算
晶体管
认知计算
铁电性
感知
材料科学
计算机科学
光电子学
心理学
工程类
认知
电气工程
人工智能
神经科学
人工神经网络
电介质
电压
循环神经网络
作者
Jiachao Zhou,Anzhe Chen,Yishu Zhang,Xinwei Zhang,Jian Chai,Jiayang Hu,Hanxi Li,Yang Xu,Xiangli Liu,Ning Tan,Fei Xue,Bin Yu
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-11-12
卷期号:24 (46): 14892-14900
被引量:6
标识
DOI:10.1021/acs.nanolett.4c05071
摘要
Emerging neuromorphic hardware promises energy-efficient computing by colocating multiple essential functions at the individual component level. The implementation is challenging due to mismatch between the characteristics of multifunctional devices and neural networks. Here, we demonstrate an artificial synapse based on a 2D α-phase indium selenide that exhibits integrated perception-and-computing-in-memory functions in a single-transistor setup, serving as a basic building block for reservoir computing. Extending to the array architecture enables concurrent image-sensing and memory. Further, we implement multimode deep-reservoir computing with adjustable nonlinear transformation and multisensory fusion using this core device. In the lane-keeping-assistance task for an unmanned vehicle, the system demonstrates ∼10
科研通智能强力驱动
Strongly Powered by AbleSci AI