Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard

机器人 背景(考古学) 计算机科学 适应性 控制工程 稳健性 工程类 人工智能 生物 程序设计语言 生态学 古生物学
作者
Mingyou Chen,Z. S. Chen,Lufeng Luo,Yunchao Tang,Jiabing Cheng,Huiling Wei,Jinhai Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108774-108774 被引量:51
标识
DOI:10.1016/j.compag.2024.108774
摘要

Fruit-picking robots are crucial for achieving efficient orchard harvesting. To genuinely meet the commercial production needs of farmers, the new generation of fruit-picking robots must be capable of demonstrating complete and continuous observation, movement, and picking behaviors throughout complex orchards, akin to real human employees. This poses systematic challenges, as many prior researches have focused solely on a part of the continuous operation of the entire orchard, such as fruit positioning, navigation, path planning, or grasping. These isolated basic functions are important but insufficient for fulfilling operational requirements on a macro scale and continuous situation. Developing an efficient control method for each basic module and constructing their internal coordination is vital for transitioning a harvesting robot from a functional prototype to a practical machine. In this context, this study tackles the visual servo control problem for efficient locomotion, picking, and their seamless integration. A set of vision algorithms for locomotion destination estimation, real-time self-positioning, and dynamic harvesting is proposed. Additionally, a solid coordination mechanism for continuous locomotion and picking behavior is established. Each method offers distinct advantages, such as improved accuracy, adaptability to varying conditions, and enhanced picking efficiency, enabling the robot to operate autonomously and continuously. Comprehensive field experiments validated the soundness of the methods. The primary contribution of this study lies in addressing the challenge of continuous operation in an entire orchard as a systematic problem and providing new insights into control methods for the future development of highly autonomous, practical, and user-oriented fruit harvesting systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨帆完成签到,获得积分10
1秒前
JamesPei应助阿航采纳,获得10
1秒前
lyy发布了新的文献求助10
1秒前
WuFen完成签到 ,获得积分10
3秒前
3秒前
keke发布了新的文献求助10
3秒前
4秒前
宇宙中心完成签到,获得积分10
4秒前
云野完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
树树完成签到,获得积分10
6秒前
mm完成签到 ,获得积分10
6秒前
7秒前
7秒前
闪闪的秋柔完成签到,获得积分10
8秒前
LALALALA发布了新的文献求助10
8秒前
8秒前
8秒前
风清扬发布了新的文献求助10
9秒前
hotcas完成签到,获得积分10
9秒前
小魏发布了新的文献求助10
9秒前
10秒前
10秒前
TEW天权完成签到,获得积分10
10秒前
Hello应助Jessica采纳,获得10
10秒前
张张孟孟发布了新的文献求助10
10秒前
云野发布了新的文献求助10
10秒前
YYY发布了新的文献求助30
11秒前
感动代双发布了新的文献求助10
13秒前
yuancaix发布了新的文献求助10
14秒前
fuje发布了新的文献求助30
14秒前
gms发布了新的文献求助10
15秒前
15秒前
lyy完成签到,获得积分10
15秒前
16秒前
pan完成签到,获得积分10
16秒前
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110524
求助须知:如何正确求助?哪些是违规求助? 3648942
关于积分的说明 11557476
捐赠科研通 3354163
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825882