亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient approach based on a novel 1D-LBP for the detection of bearing failures with a hybrid deep learning method

计算机科学 方位(导航) 人工智能 深度学习 机器学习 模式识别(心理学) 数据挖掘
作者
Yılmaz Kaya,Melih Kuncan,Eyyüp Akcan,Kaplan Kaplan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:155: 111438-111438 被引量:21
标识
DOI:10.1016/j.asoc.2024.111438
摘要

Bearings serve as fundamental components in the transmission of motion for rotating machinery. The occurrence of mechanical wear and subsequent bearing failures within these rotating systems can lead to diminished operational efficiency and, if left unaddressed, may result in the complete cessation of the system's function. Hence, there exists a critical need for effective monitoring methodologies aimed at accurately detecting faults in such systems, preferably in their nascent stages. This study presents a novel approach to fault diagnosis leveraging vibration data obtained from bearings. Initially, a feature extraction technique is devised, which incorporates localized signal variations. Subsequently, these features, extracted via MM-1D-LBP, are utilized in conjunction with a hybrid deep learning network based on Long Short-Term Memory (LSTM) and one-dimensional Convolutional Neural Network (1D-CNN) architectures for diagnostic purposes. To assess the efficacy of the proposed methodology, experiments were conducted on two distinct datasets acquired from real-world bearing assemblies. In the first dataset, the aim was to predict various failure types (Inner Ring, Outer Ring, Ball). In the second dataset, the objective was to estimate defect sizes using bearing vibration signals corresponding to defects of different dimensions (0.15 cm, 0.5 cm, 0.9 cm) under consistent operating conditions. Remarkably high success rates of 99.31 % and 99.65 % were achieved for the two datasets, respectively, thus underscoring the efficacy of the proposed MM-1D-LBP+1D-CNN-LSTM approach. These findings not only demonstrate the feasibility of the proposed method for fault diagnosis in bearing systems but also suggest its potential applicability across diverse signal categories. Ultimately, this research contributes to advancing the state-of-the-art in fault diagnosis methodologies for rotating machinery, offering enhanced accuracy and early detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到,获得积分10
1秒前
13秒前
ZoyaR完成签到,获得积分10
18秒前
共享精神应助科研通管家采纳,获得10
20秒前
研友_R2D2发布了新的文献求助10
26秒前
35秒前
35秒前
清风朗月发布了新的文献求助10
42秒前
55秒前
1分钟前
斯文败类应助清风朗月采纳,获得10
1分钟前
Harrison发布了新的文献求助10
1分钟前
李爱国应助轻松凌柏采纳,获得10
1分钟前
1分钟前
俏皮的钻石完成签到 ,获得积分10
1分钟前
轻松凌柏完成签到 ,获得积分10
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
yeah完成签到 ,获得积分10
3分钟前
3分钟前
田様应助whz采纳,获得10
3分钟前
3分钟前
3分钟前
ramsey33完成签到 ,获得积分10
4分钟前
whz发布了新的文献求助10
4分钟前
ala完成签到,获得积分10
4分钟前
4分钟前
whz完成签到,获得积分10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
4分钟前
FJXTY发布了新的文献求助10
4分钟前
热情依白完成签到 ,获得积分10
4分钟前
4分钟前
FJXTY完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553