An efficient approach based on a novel 1D-LBP for the detection of bearing failures with a hybrid deep learning method

计算机科学 方位(导航) 人工智能 深度学习 机器学习 模式识别(心理学) 数据挖掘
作者
Yılmaz Kaya,Melih Kuncan,Eyyüp Akcan,Kaplan Kaplan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:155: 111438-111438 被引量:14
标识
DOI:10.1016/j.asoc.2024.111438
摘要

Bearings serve as fundamental components in the transmission of motion for rotating machinery. The occurrence of mechanical wear and subsequent bearing failures within these rotating systems can lead to diminished operational efficiency and, if left unaddressed, may result in the complete cessation of the system's function. Hence, there exists a critical need for effective monitoring methodologies aimed at accurately detecting faults in such systems, preferably in their nascent stages. This study presents a novel approach to fault diagnosis leveraging vibration data obtained from bearings. Initially, a feature extraction technique is devised, which incorporates localized signal variations. Subsequently, these features, extracted via MM-1D-LBP, are utilized in conjunction with a hybrid deep learning network based on Long Short-Term Memory (LSTM) and one-dimensional Convolutional Neural Network (1D-CNN) architectures for diagnostic purposes. To assess the efficacy of the proposed methodology, experiments were conducted on two distinct datasets acquired from real-world bearing assemblies. In the first dataset, the aim was to predict various failure types (Inner Ring, Outer Ring, Ball). In the second dataset, the objective was to estimate defect sizes using bearing vibration signals corresponding to defects of different dimensions (0.15 cm, 0.5 cm, 0.9 cm) under consistent operating conditions. Remarkably high success rates of 99.31 % and 99.65 % were achieved for the two datasets, respectively, thus underscoring the efficacy of the proposed MM-1D-LBP+1D-CNN-LSTM approach. These findings not only demonstrate the feasibility of the proposed method for fault diagnosis in bearing systems but also suggest its potential applicability across diverse signal categories. Ultimately, this research contributes to advancing the state-of-the-art in fault diagnosis methodologies for rotating machinery, offering enhanced accuracy and early detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助nhocbinzuzu采纳,获得10
1秒前
Yichen Zhang完成签到,获得积分10
2秒前
4秒前
乖小俏完成签到,获得积分10
4秒前
5秒前
久桃发布了新的文献求助10
6秒前
7秒前
田田田发布了新的文献求助10
9秒前
9秒前
llzuo发布了新的文献求助20
11秒前
太叔开山发布了新的文献求助10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
wonder123应助科研通管家采纳,获得10
12秒前
久桃完成签到,获得积分10
12秒前
Ava应助科研通管家采纳,获得10
13秒前
AlinaLee应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得30
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
14秒前
16发布了新的文献求助10
16秒前
小二郎应助renshiq采纳,获得10
16秒前
天天快乐应助lty采纳,获得10
18秒前
大闲鱼铭一完成签到 ,获得积分10
18秒前
侯绮彤发布了新的文献求助10
19秒前
活力傲蕾发布了新的文献求助10
20秒前
法侣完成签到,获得积分10
20秒前
果粒多发布了新的文献求助10
20秒前
20秒前
鲤鱼又菡完成签到,获得积分10
21秒前
21秒前
21秒前
DEAhuan发布了新的文献求助10
22秒前
青藤发布了新的文献求助10
22秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840126
求助须知:如何正确求助?哪些是违规求助? 3382299
关于积分的说明 10522444
捐赠科研通 3101747
什么是DOI,文献DOI怎么找? 1708284
邀请新用户注册赠送积分活动 822405
科研通“疑难数据库(出版商)”最低求助积分说明 773250