An efficient approach based on a novel 1D-LBP for the detection of bearing failures with a hybrid deep learning method

计算机科学 方位(导航) 人工智能 深度学习 机器学习 模式识别(心理学) 数据挖掘
作者
Yılmaz Kaya,Melih Kuncan,Eyyüp Akcan,Kaplan Kaplan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:155: 111438-111438 被引量:21
标识
DOI:10.1016/j.asoc.2024.111438
摘要

Bearings serve as fundamental components in the transmission of motion for rotating machinery. The occurrence of mechanical wear and subsequent bearing failures within these rotating systems can lead to diminished operational efficiency and, if left unaddressed, may result in the complete cessation of the system's function. Hence, there exists a critical need for effective monitoring methodologies aimed at accurately detecting faults in such systems, preferably in their nascent stages. This study presents a novel approach to fault diagnosis leveraging vibration data obtained from bearings. Initially, a feature extraction technique is devised, which incorporates localized signal variations. Subsequently, these features, extracted via MM-1D-LBP, are utilized in conjunction with a hybrid deep learning network based on Long Short-Term Memory (LSTM) and one-dimensional Convolutional Neural Network (1D-CNN) architectures for diagnostic purposes. To assess the efficacy of the proposed methodology, experiments were conducted on two distinct datasets acquired from real-world bearing assemblies. In the first dataset, the aim was to predict various failure types (Inner Ring, Outer Ring, Ball). In the second dataset, the objective was to estimate defect sizes using bearing vibration signals corresponding to defects of different dimensions (0.15 cm, 0.5 cm, 0.9 cm) under consistent operating conditions. Remarkably high success rates of 99.31 % and 99.65 % were achieved for the two datasets, respectively, thus underscoring the efficacy of the proposed MM-1D-LBP+1D-CNN-LSTM approach. These findings not only demonstrate the feasibility of the proposed method for fault diagnosis in bearing systems but also suggest its potential applicability across diverse signal categories. Ultimately, this research contributes to advancing the state-of-the-art in fault diagnosis methodologies for rotating machinery, offering enhanced accuracy and early detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
healer发布了新的文献求助10
1秒前
1秒前
1秒前
LHC完成签到,获得积分10
1秒前
ww关闭了ww文献求助
1秒前
2秒前
2秒前
2秒前
就是一种水稻的完成签到,获得积分10
3秒前
CipherSage应助小坏蛋蛋蛋蛋采纳,获得10
3秒前
4秒前
科研通AI6应助大气的幻天采纳,获得10
4秒前
fangwang完成签到,获得积分10
4秒前
小小关注了科研通微信公众号
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
打打应助SUNLE采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
孟子发布了新的文献求助10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
曾经曼梅发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
闪闪乘风发布了新的文献求助10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
小乐应助科研通管家采纳,获得20
6秒前
情怀应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Understanding Xi Jinping's educational philosophy 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4713346
求助须知:如何正确求助?哪些是违规求助? 4076777
关于积分的说明 12607905
捐赠科研通 3779431
什么是DOI,文献DOI怎么找? 2087683
邀请新用户注册赠送积分活动 1114057
科研通“疑难数据库(出版商)”最低求助积分说明 991537