羟基化
生物催化
化学
对映选择合成
基质(水族馆)
组合化学
蛋白质工程
定向进化
双加氧酶
生物转化
酶
化学合成
范围(计算机科学)
代谢稳定性
有机化学
反应条件
产品(数学)
生化工程
全合成
可扩展性
立体化学
工业生物技术
酶催化
合成生物学
理论(学习稳定性)
天然产物
有机合成
化学稳定性
药物发现
立体异构
最终产品
作者
Wai Ling Cheung‐Lee,Joshua N. Kolev,John A. McIntosh,Agnieszka A. Gil,Weilan Pan,Li Xiao,Juan E. Velásquez,Rekha Gangam,Matthew S. Winston,Shasha Li,Kotoe Abe,Embarek Alwedi,Zachary E. X. Dance,Haiyang Fan,Kaori Hiraga,Jungchul Kim,Birgit Kosjek,Diane N. Le,Nastaran Salehi Marzijarani,Keith Mattern
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-01-27
卷期号:63 (13): e202316133-e202316133
被引量:45
标识
DOI:10.1002/anie.202316133
摘要
Abstract Biocatalytic oxidations are an emerging technology for selective C−H bond activation. While promising for a range of selective oxidations, practical use of enzymes catalyzing aerobic hydroxylation is presently limited by their substrate scope and stability under industrially relevant conditions. Here, we report the engineering and practical application of a non‐heme iron and α‐ketoglutarate‐dependent dioxygenase for the direct stereo‐ and regio‐selective hydroxylation of a non‐native fluoroindanone en route to the oncology treatment belzutifan, replacing a five‐step chemical synthesis with a direct enantioselective hydroxylation. Mechanistic studies indicated that formation of the desired product was limited by enzyme stability and product overoxidation, with these properties subsequently improved by directed evolution, yielding a biocatalyst capable of >15,000 total turnovers. Highlighting the industrial utility of this biocatalyst, the high‐yielding, green, and efficient oxidation was demonstrated at kilogram scale for the synthesis of belzutifan.
科研通智能强力驱动
Strongly Powered by AbleSci AI