Human Visual Cortex and Deep Convolutional Neural Network Care Deeply about Object Background

心理学 对象(语法) 视皮层 卷积神经网络 皮质(解剖学) 神经科学 认知心理学 认知科学 视觉对象识别的认知神经科学 沟通 人工智能 计算机科学
作者
Jessica Loke,Noor Seijdel,Lukas Snoek,Lynn K. A. Sörensen,Ron van de Klundert,Matthew van der Meer,Eva Quispel,Natalie L. M. Cappaert,H. Steven Scholte
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:36 (3): 551-566 被引量:2
标识
DOI:10.1162/jocn_a_02098
摘要

Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task. Previous physiological studies on object categorization have highlighted the importance of figure-ground segregation-the ability to distinguish objects from their backgrounds. Therefore, we investigated whether figure-ground segregation could explain the predictive power of DCNNs. Using a stimulus set consisting of identical target objects embedded in different backgrounds, we examined the influence of object background versus object category within both EEG and DCNN activity. Crucially, the recombination of naturalistic objects and experimentally controlled backgrounds creates a challenging and naturalistic task, while retaining experimental control. Our results showed that early EEG activity (< 100 msec) and early DCNN layers represent object background rather than object category. We also found that the ability of DCNNs to predict EEG activity is primarily influenced by how both systems process object backgrounds, rather than object categories. We demonstrated the role of figure-ground segregation as a potential prerequisite for recognition of object features, by contrasting the activations of trained and untrained (i.e., random weights) DCNNs. These findings suggest that both human visual cortex and DCNNs prioritize the segregation of object backgrounds and target objects to perform object categorization. Altogether, our study provides new insights into the mechanisms underlying object categorization as we demonstrated that both human visual cortex and DCNNs care deeply about object background.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ziyi_Xu完成签到,获得积分10
刚刚
852应助务实凡灵采纳,获得10
1秒前
1秒前
1秒前
lisa完成签到,获得积分10
1秒前
Yangshu发布了新的文献求助10
2秒前
penzer完成签到 ,获得积分10
4秒前
风趣的含羞草完成签到,获得积分10
4秒前
lisa发布了新的文献求助10
4秒前
YuenYuen发布了新的文献求助10
5秒前
鲫鱼完成签到 ,获得积分10
5秒前
6秒前
MiriamYu完成签到,获得积分10
7秒前
7秒前
7秒前
sss完成签到,获得积分10
8秒前
8秒前
9秒前
钰小憨完成签到,获得积分10
9秒前
田様应助要减肥采纳,获得10
9秒前
洪妹妹完成签到 ,获得积分10
10秒前
夏冉完成签到,获得积分10
11秒前
香蕉觅云应助Yangshu采纳,获得10
11秒前
12秒前
小叶子发布了新的文献求助10
13秒前
啥也不是完成签到,获得积分10
13秒前
13秒前
小白发布了新的文献求助10
13秒前
huan发布了新的文献求助10
13秒前
13秒前
尼古丁真应助想做一株草采纳,获得30
14秒前
务实凡灵发布了新的文献求助10
14秒前
鸢尾完成签到,获得积分10
15秒前
15秒前
15秒前
坚定的诗双完成签到,获得积分10
16秒前
如意的忆秋完成签到 ,获得积分10
17秒前
qi完成签到,获得积分10
17秒前
俊逸的篮球完成签到,获得积分10
17秒前
trouble虫虫发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4431861
求助须知:如何正确求助?哪些是违规求助? 3908212
关于积分的说明 12140466
捐赠科研通 3554193
什么是DOI,文献DOI怎么找? 1950604
邀请新用户注册赠送积分活动 990619
科研通“疑难数据库(出版商)”最低求助积分说明 886549