Human Visual Cortex and Deep Convolutional Neural Network Care Deeply about Object Background

心理学 对象(语法) 视皮层 卷积神经网络 皮质(解剖学) 神经科学 认知心理学 认知科学 视觉对象识别的认知神经科学 沟通 人工智能 计算机科学
作者
Jessica Loke,Noor Seijdel,Lukas Snoek,Lynn K. A. Sörensen,Ron van de Klundert,Matthew van der Meer,Eva Quispel,Natalie L. M. Cappaert,H. Steven Scholte
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:36 (3): 551-566 被引量:2
标识
DOI:10.1162/jocn_a_02098
摘要

Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task. Previous physiological studies on object categorization have highlighted the importance of figure-ground segregation-the ability to distinguish objects from their backgrounds. Therefore, we investigated whether figure-ground segregation could explain the predictive power of DCNNs. Using a stimulus set consisting of identical target objects embedded in different backgrounds, we examined the influence of object background versus object category within both EEG and DCNN activity. Crucially, the recombination of naturalistic objects and experimentally controlled backgrounds creates a challenging and naturalistic task, while retaining experimental control. Our results showed that early EEG activity (< 100 msec) and early DCNN layers represent object background rather than object category. We also found that the ability of DCNNs to predict EEG activity is primarily influenced by how both systems process object backgrounds, rather than object categories. We demonstrated the role of figure-ground segregation as a potential prerequisite for recognition of object features, by contrasting the activations of trained and untrained (i.e., random weights) DCNNs. These findings suggest that both human visual cortex and DCNNs prioritize the segregation of object backgrounds and target objects to perform object categorization. Altogether, our study provides new insights into the mechanisms underlying object categorization as we demonstrated that both human visual cortex and DCNNs care deeply about object background.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
辛勤的毛毛完成签到 ,获得积分10
1秒前
1秒前
1秒前
吨吨吨完成签到,获得积分10
2秒前
李健应助sgasdhgdfhhfj采纳,获得30
2秒前
研友_Zb1rln完成签到,获得积分10
3秒前
4秒前
哦呦看灰机完成签到,获得积分10
5秒前
浮游应助无名之辈采纳,获得10
5秒前
白日梦发布了新的文献求助10
5秒前
彭于晏应助风向大海采纳,获得10
5秒前
5秒前
6秒前
duan发布了新的文献求助10
6秒前
小白发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
兜一兜完成签到,获得积分10
7秒前
香蕉觅云应助斯文的曼岚采纳,获得10
7秒前
整齐唯雪发布了新的文献求助30
8秒前
嘻嘻嘻发布了新的文献求助10
8秒前
不安猫咪关注了科研通微信公众号
9秒前
yupeng_xu完成签到,获得积分10
9秒前
biu完成签到,获得积分10
9秒前
小明应助哦呦看灰机采纳,获得10
9秒前
沉住气发布了新的文献求助10
10秒前
11秒前
超级的树叶完成签到,获得积分10
11秒前
MJJ发布了新的文献求助10
11秒前
小陈1122发布了新的文献求助10
11秒前
Ge0085发布了新的文献求助10
13秒前
14秒前
CT发布了新的文献求助20
15秒前
万能图书馆应助zhao采纳,获得10
15秒前
搜集达人应助小陈1122采纳,获得10
16秒前
Feiyan完成签到,获得积分10
17秒前
小卷发布了新的文献求助10
18秒前
18秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499682
求助须知:如何正确求助?哪些是违规求助? 4596445
关于积分的说明 14454640
捐赠科研通 4529637
什么是DOI,文献DOI怎么找? 2482120
邀请新用户注册赠送积分活动 1466084
关于科研通互助平台的介绍 1438891