Intelligent optimization design of squeeze casting process parameters based on neural network and improved sparrow search algorithm

人工神经网络 反向传播 过程(计算) 遗传算法 计算机科学 工艺优化 工程类 数学优化 人工智能 机器学习 数学 环境工程 操作系统
作者
Deng Jianxin,Guangming Liu,Ling Wang,Gang Liu,Xiusong Wu
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:39: 100600-100600 被引量:28
标识
DOI:10.1016/j.jii.2024.100600
摘要

Squeeze casting process parameters are the key to squeeze casting production and to obtain excellent performance casts. To realize intelligent optimization design of process parameters under various requirements, this work presents a new intelligent optimization design framework for squeeze casting process parameters based on process data and integrating a two-stage intelligent integrated optimization. To adapt to diverse optimization applications of different process and target parameters, the backpropagation (BP) neural network and existing process data are utilized to intelligently establish the incompletely determined correlations between process parameters and squeeze cast quality or properties. An improved sparrow search algorithm (LCSSA) is developed and integrated to optimize both the aforementioned model structure and intelligently obtain the optimal solution, that is, the two stages of optimization. For the purpose of assessing the effect of each performance on the combination of process parameters, the information entropy weight approach is used. Various application cases and experiments have been conducted to evaluate the effectiveness of the suggested intelligent optimization design framework. It is indicated that the proposed method is practicable and can intelligently achieve ideal process parameters with high accuracy even based on small-scale data samples. The solving efficiency and optimization accuracy of LCSSA are superior than those of other intelligent optimization algorithms like the genetic algorithm (GA). The proposed framework outperforms the mixture of the BP neural network and other traditional optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
向七郎发布了新的文献求助20
1秒前
zy完成签到,获得积分20
1秒前
1秒前
1秒前
mmiww发布了新的文献求助10
2秒前
MLi完成签到,获得积分10
2秒前
超帅连虎应助阿帆777采纳,获得30
2秒前
3秒前
多喝白开水应助淡淡夕阳采纳,获得10
3秒前
3秒前
pkqbkl发布了新的文献求助10
3秒前
Sui发布了新的文献求助10
4秒前
默默纲完成签到,获得积分10
4秒前
共享精神应助热心向日葵采纳,获得10
4秒前
Yilin发布了新的文献求助10
4秒前
敏感以旋完成签到,获得积分10
4秒前
4秒前
木婉清发布了新的文献求助10
5秒前
5秒前
5秒前
孙皓阳完成签到,获得积分20
5秒前
5秒前
liuliu发布了新的文献求助30
6秒前
聪明熠彤发布了新的文献求助10
7秒前
今后应助BinSir采纳,获得10
7秒前
8秒前
今后应助敏感以旋采纳,获得10
8秒前
糟糕的沂发布了新的文献求助30
8秒前
weidongwu完成签到,获得积分10
9秒前
lisa0612发布了新的文献求助10
9秒前
9秒前
孙皓阳发布了新的文献求助10
9秒前
又又发布了新的文献求助10
9秒前
9秒前
阿文321完成签到,获得积分10
9秒前
Sui完成签到,获得积分10
9秒前
9秒前
xiaoxiaoz发布了新的文献求助10
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Battery Management Systems, Volume lll: Physics-Based Methods 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
Corpus Linguistics for Language Learning Research 300
Grammar in Action:Building comprehensive grammars of talk-in-interaction 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138012
求助须知:如何正确求助?哪些是违规求助? 3674693
关于积分的说明 11616228
捐赠科研通 3369333
什么是DOI,文献DOI怎么找? 1850859
邀请新用户注册赠送积分活动 914165
科研通“疑难数据库(出版商)”最低求助积分说明 829103