Open Set Domain Adaptation: Theoretical Bound and Algorithm

域适应 算法 适应(眼睛) 计算机科学 集合(抽象数据类型) 领域(数学分析) 数学 人工智能 物理 程序设计语言 数学分析 分类器(UML) 光学
作者
Zhen Fang,Jie Lü,Feng Liu,Junyu Xuan,Guangquan Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 4309-4322 被引量:180
标识
DOI:10.1109/tnnls.2020.3017213
摘要

The aim of unsupervised domain adaptation is to leverage the knowledge in a labeled (source) domain to improve a model's learning performance with an unlabeled (target) domain-the basic strategy being to mitigate the effects of discrepancies between the two distributions. Most existing algorithms can only handle unsupervised closed set domain adaptation (UCSDA), i.e., where the source and target domains are assumed to share the same label set. In this article, we target a more challenging but realistic setting: unsupervised open set domain adaptation (UOSDA), where the target domain has unknown classes that are not found in the source domain. This is the first study to provide learning bound for open set domain adaptation, which we do by theoretically investigating the risk of the target classifier on unknown classes. The proposed learning bound has a special term, namely, open set difference, which reflects the risk of the target classifier on unknown classes. Furthermore, we present a novel and theoretically guided unsupervised algorithm for open set domain adaptation, called distribution alignment with open difference (DAOD), which is based on regularizing this open set difference bound. The experiments on several benchmark data sets show the superior performance of the proposed UOSDA method compared with the state-of-the-art methods in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
keyanzhang完成签到 ,获得积分10
3秒前
4秒前
aliu发布了新的文献求助30
7秒前
所所应助显隐采纳,获得10
7秒前
科研通AI6应助易安采纳,获得30
7秒前
GZPFJMU发布了新的文献求助10
7秒前
li发布了新的文献求助10
9秒前
charles发布了新的文献求助10
9秒前
10秒前
11秒前
XXXX发布了新的文献求助10
12秒前
隐形曼青应助七星茶采纳,获得30
13秒前
14秒前
li完成签到,获得积分10
15秒前
GZPFJMU完成签到,获得积分10
16秒前
体贴柜子完成签到 ,获得积分10
17秒前
Bystander完成签到 ,获得积分10
17秒前
温柔的中蓝完成签到,获得积分10
17秒前
18秒前
18秒前
AspenW发布了新的文献求助10
18秒前
Xie完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
Szw666完成签到,获得积分10
21秒前
yy完成签到,获得积分10
21秒前
曦耀发布了新的文献求助10
21秒前
21秒前
贪玩的秋柔应助danli采纳,获得10
22秒前
科研通AI6应助dd采纳,获得10
22秒前
慕青应助Tigher采纳,获得10
22秒前
田様应助显隐采纳,获得10
23秒前
23秒前
XXXX完成签到,获得积分10
24秒前
02发布了新的文献求助10
25秒前
26秒前
26秒前
科研通AI6应助juan采纳,获得10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759