Sensor-Driven Area Coverage for an Autonomous Fixed-Wing Unmanned Aerial Vehicle

计算机科学 工作区 弹道 实时计算 计算机视觉 万向节 任务(项目管理) 人工智能 地面段 机器人 工程类 卫星 天文 物理 航空航天工程 系统工程
作者
Liam Paull,Carl Thibault,Amr Nagaty,Mae Seto,Howard Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:44 (9): 1605-1618 被引量:79
标识
DOI:10.1109/tcyb.2013.2290975
摘要

Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Qiuyajing完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
归尘发布了新的文献求助10
19秒前
单纯的小土豆完成签到 ,获得积分10
21秒前
小石头完成签到 ,获得积分10
24秒前
归尘发布了新的文献求助10
25秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
魔幻的妖丽完成签到 ,获得积分0
28秒前
归尘发布了新的文献求助10
29秒前
lb001发布了新的文献求助30
32秒前
归尘发布了新的文献求助10
32秒前
负责以山完成签到 ,获得积分10
33秒前
刘星星完成签到 ,获得积分10
35秒前
傻傻的夜柳完成签到 ,获得积分10
36秒前
37秒前
归尘发布了新的文献求助10
38秒前
CoCo完成签到 ,获得积分10
41秒前
归尘发布了新的文献求助10
43秒前
44秒前
kyt_vip完成签到,获得积分10
46秒前
Karl完成签到,获得积分10
47秒前
47秒前
归尘发布了新的文献求助10
49秒前
虚心岂愈完成签到 ,获得积分10
51秒前
able完成签到 ,获得积分10
53秒前
归尘发布了新的文献求助10
53秒前
54秒前
56秒前
朱婷完成签到 ,获得积分10
56秒前
hyl-tcm完成签到 ,获得积分10
57秒前
归尘发布了新的文献求助10
57秒前
1分钟前
归尘发布了新的文献求助10
1分钟前
沐沐心完成签到 ,获得积分10
1分钟前
cc完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534662
求助须知:如何正确求助?哪些是违规求助? 4622620
关于积分的说明 14582731
捐赠科研通 4562847
什么是DOI,文献DOI怎么找? 2500424
邀请新用户注册赠送积分活动 1479910
关于科研通互助平台的介绍 1451161