Enhanced Graph Isomorphism Network for Molecular ADMET Properties Prediction

计算机科学 图同构 图形 水准点(测量) 人工神经网络 特征(语言学) 理论计算机科学 人工智能 机器学习 折线图 大地测量学 语言学 哲学 地理
作者
Yuzhong Peng,Yanmei Lin,Xiao‐Yuan Jing,Hao Zhang,Huang Yi-ran,Guang Sheng Luo
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 168344-168360 被引量:53
标识
DOI:10.1109/access.2020.3022850
摘要

The evaluation of absorption, distribution, metabolism, exclusion, and toxicity (ADMET) properties plays a key role in a variety of domains including industrial chemicals, agrochemicals, cosmetics, environmental science, food chemistry, and particularly drug development. Since molecules are often intrinsically described as molecular graphs, graph neural networks have recently been studied to improve the prediction of ADMET properties. Among many graph neural networks published in recent years, Graph Isomorphism Network (GIN) is a relatively recent and very promising one. In this paper, we propose an enhanced GIN, called MolGIN, via exploiting the bond features and differences influence of the atom neighbors to end-to-end predict ADMET properties. Based on GIN, MolGIN concatenates the bond feature together with node feature in the feature aggregator and applies a gate unit to adjust the atomic neighborhood weights to map the differences in the interaction strength between the central atom and its neighbors, such that more meaningful structural patterns of molecules can be explored toward better molecular modeling. Extensive experiments were conducted on seven public datasets to evaluate MolGIN against four baseline models with benchmark metrics. Experimental results of MolGIN were also compared with state-of-the-art results published in the last three years on each dataset. Experimental results in terms of RMSE and AUC show that MolGIN significantly boosts the prediction performance of GIN and markedly outperforms the baseline models, and achieves comparable or superior performance to state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
riverflowing发布了新的文献求助10
刚刚
資鼒发布了新的文献求助10
1秒前
桐桐应助qq采纳,获得10
1秒前
还不错关注了科研通微信公众号
1秒前
柏莉发布了新的文献求助10
1秒前
2秒前
雪雪儿完成签到,获得积分10
3秒前
FashionBoy应助高点点采纳,获得10
3秒前
3秒前
Orange应助2633148059采纳,获得10
4秒前
OvO发布了新的文献求助10
4秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
HZY完成签到,获得积分10
5秒前
5秒前
6秒前
wendinfgmei发布了新的文献求助10
7秒前
今后应助以太歌声采纳,获得10
7秒前
Suagy发布了新的文献求助10
7秒前
8秒前
kercy发布了新的文献求助10
9秒前
kukupapa完成签到,获得积分10
9秒前
浮游应助钱念波采纳,获得10
9秒前
9秒前
英姑应助aaa采纳,获得10
9秒前
9秒前
qiuling完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
CipherSage应助有魅力的以南采纳,获得10
11秒前
11秒前
朴素臻完成签到,获得积分10
11秒前
柏莉完成签到,获得积分20
11秒前
12秒前
qq发布了新的文献求助10
12秒前
資鼒完成签到,获得积分10
12秒前
落寞的甜瓜完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676060
求助须知:如何正确求助?哪些是违规求助? 4053945
关于积分的说明 12535999
捐赠科研通 3748046
什么是DOI,文献DOI怎么找? 2070131
邀请新用户注册赠送积分活动 1099180
科研通“疑难数据库(出版商)”最低求助积分说明 978873