A neuro-evolution approach to infer a Boolean network from time-series gene expressions

布尔网络 推论 计算机科学 基因调控网络 代表(政治) 布尔函数 人工神经网络 数据挖掘 时间序列 功能(生物学) 生物网络 遗传算法 人工智能 机器学习 理论计算机科学 算法 计算生物学 基因 生物 基因表达 政治 进化生物学 法学 生物化学 政治学
作者
Shohag Barman,Yung‐Keun Kwon
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (Supplement_2): i762-i769 被引量:9
标识
DOI:10.1093/bioinformatics/btaa840
摘要

Abstract Summary In systems biology, it is challenging to accurately infer a regulatory network from time-series gene expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this problem using a genetic algorithm, there is room for performance improvement because it employed a limited representation model of regulatory functions. In this regard, we devised a novel genetic algorithm combined with a neural network for the Boolean network inference, where a neural network is used to represent the regulatory function instead of an incomplete Boolean truth table used in the GABNI. In addition, our new method extended the range of the time-step lag parameter value between the regulatory and the target genes for more flexible representation of the regulatory function. Extensive simulations with the gene expression datasets of the artificial and real networks were conducted to compare our method with five well-known existing methods including GABNI. Our proposed method significantly outperformed them in terms of both structural and dynamics accuracy. Conclusion Our method can be a promising tool to infer a large-scale Boolean regulatory network from time-series gene expression data. Availability and implementation The source code is freely available at https://github.com/kwon-uou/NNBNI. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不散的和弦完成签到,获得积分10
1秒前
1秒前
斯文败类应助fu采纳,获得10
2秒前
热心的安阳完成签到,获得积分20
2秒前
星辰大海应助666采纳,获得10
3秒前
领导范儿应助wxr采纳,获得10
3秒前
Frank发布了新的文献求助10
4秒前
4秒前
5秒前
向日葵发布了新的文献求助10
5秒前
维维发布了新的文献求助10
6秒前
6秒前
熙哲完成签到,获得积分10
6秒前
6秒前
了了完成签到,获得积分10
7秒前
7秒前
bzc229完成签到,获得积分10
7秒前
8秒前
丰子灿完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
科目三应助七七八八采纳,获得10
9秒前
Erin完成签到,获得积分10
9秒前
爱吃火锅的lulu完成签到 ,获得积分10
10秒前
勾股定理发布了新的文献求助10
10秒前
野与荷发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
fanicky发布了新的文献求助10
12秒前
12秒前
Whale完成签到,获得积分10
13秒前
慕青应助执着的忆雪采纳,获得10
14秒前
花花完成签到,获得积分10
14秒前
xiaohhh发布了新的文献求助10
14秒前
15秒前
茉莉是个饱饱完成签到,获得积分10
15秒前
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872688
求助须知:如何正确求助?哪些是违规求助? 3415006
关于积分的说明 10692306
捐赠科研通 3139215
什么是DOI,文献DOI怎么找? 1732066
邀请新用户注册赠送积分活动 835227
科研通“疑难数据库(出版商)”最低求助积分说明 781768