材料科学
石墨烯
聚二甲基硅氧烷
压力传感器
微观结构
双层
压阻效应
双层石墨烯
复合材料
光电子学
纳米技术
机械工程
膜
生物
工程类
遗传学
作者
Lixia Cheng,Renxin Wang,Xiaojian Hao,Guochang Liu
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2021-01-04
卷期号:21 (1): 289-289
被引量:41
摘要
As a new material, graphene shows excellent properties in mechanics, electricity, optics, and so on, which makes it widely concerned by people. At present, it is difficult for graphene pressure sensor to meet both high sensitivity and large pressure detection range at the same time. Therefore, it is highly desirable to produce flexible pressure sensors with sufficient sensitivity in a wide working range and with simple process. Herein, a relatively high flexible pressure sensor based on piezoresistivity is presented by combining the conical microstructure polydimethylsiloxane (PDMS) with bilayer graphene together. The piezoresistive material (bilayer graphene) attached to the flexible substrate can convert the local deformation caused by the vertical force into the change of resistance. Results show that the pressure sensor based on conical microstructure PDMS-bilayer graphene can operate at a pressure range of 20 kPa while maintaining a sensitivity of 0.122 ± 0.002 kPa−1 (0–5 kPa) and 0.077 ± 0.002 kPa−1 (5–20 kPa), respectively. The response time of the sensor is about 70 ms. In addition to the high sensitivity of the pressure sensor, it also has excellent reproducibility at different pressure and temperature. The pressure sensor based on conical microstructure PDMS-bilayer graphene can sense the motion of joint well when the index finger is bent, which makes it possible to be applied in electronic skin, flexible electronic devices, and other fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI